Processing math: 95%
Research article Special Issues

Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales

  • This paper introduced novel multidimensional Hardy-type inequalities with general kernels on time scales, extending existing results in the literature. We established generalized inequalities involving a general Hardy operator with multiple variables and kernels on arbitrary time scales. Our findings not only encompassed known results in the realm of real numbers (T=R), but also provided refinements and generalizations thereof. The proposed inequalities offered versatile applications in mathematical analysis and beyond, contributing to the ongoing exploration of inequalities on diverse time scales.

    Citation: M. Zakarya, Ghada AlNemer, A. I. Saied, H. M. Rezk. Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales[J]. AIMS Mathematics, 2024, 9(8): 21414-21432. doi: 10.3934/math.20241040

    Related Papers:

    [1] Xianyong Huang, Shanhe Wu, Bicheng Yang . A Hardy-Hilbert-type inequality involving modified weight coefficients and partial sums. AIMS Mathematics, 2022, 7(4): 6294-6310. doi: 10.3934/math.2022350
    [2] Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk . Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534
    [3] Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126
    [4] Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas . Some (p, q)-Hardy type inequalities for (p, q)-integrable functions. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006
    [5] Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250
    [6] Limin Yang, Ruiyun Yang . Some new Hardy-Hilbert-type inequalities with multiparameters. AIMS Mathematics, 2022, 7(1): 840-854. doi: 10.3934/math.2022050
    [7] Pengyan Wang, Jiahao Wang . Hardy type identities and inequalities with divergence type operators on smooth metric measure spaces. AIMS Mathematics, 2024, 9(6): 16354-16375. doi: 10.3934/math.2024792
    [8] Tianyang He, Zhiwen Liu, Ting Yu . The Weighted $ \boldsymbol{L}^{\boldsymbol{p}} $ estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041
    [9] Bicheng Yang, Shanhe Wu, Qiang Chen . On an extended Hardy-Littlewood-Polya’s inequality. AIMS Mathematics, 2020, 5(2): 1550-1561. doi: 10.3934/math.2020106
    [10] Khaled Kefi, Mohammed M. Al-Shomrani . On multiple solutions for an elliptic problem involving Leray–Lions operator, Hardy potential and indefinite weight with mixed boundary conditions. AIMS Mathematics, 2025, 10(3): 5444-5455. doi: 10.3934/math.2025251
  • This paper introduced novel multidimensional Hardy-type inequalities with general kernels on time scales, extending existing results in the literature. We established generalized inequalities involving a general Hardy operator with multiple variables and kernels on arbitrary time scales. Our findings not only encompassed known results in the realm of real numbers (T=R), but also provided refinements and generalizations thereof. The proposed inequalities offered versatile applications in mathematical analysis and beyond, contributing to the ongoing exploration of inequalities on diverse time scales.


    Opic and Kufiner [1] proved that if 1<rϱ<, then

    (bau(ϰ)(ϰah(τ)dτ)ϱdϰ)1ϱC(bahr(ϰ)υ(ϰ)dϰ)1r, (1.1)

    holds for the nonnegative function h, if

    K:=supa<ϰ<b(bϰu(τ)dτ)1ϱ(ϰaυ1ϖ(τ)dτ)1ϖ<,

    where ab and u,v are measurable positive functions in (a,b). Furthermore, an estimate for the constant C in (1.1) is given by

    C(1+ϱϖ)1ϱ(1+ϖϱ)1ϖK,   where  ϖ=rr1.

    Stepanov [2] proved that if 0<r1, rϱ< and k0 is a measurable kernel, then

    (0u(ϰ)(0k(ϰ,η)h(η)dη)ϱdϰ)1ϱC(0hr(ϰ)υ(ϰ)dϰ)1r, (1.2)

    holds for the nonnegative nondecreasing function h, if

    L=supτ>0(τυ(ϰ)dϰ)1r(0u(ϰ)(τk(ϰ,η)dη)ϱdϰ)1ϱ<.

    Furthermore, if C in (1.2) is the smallest feasible, then L=C.

    Heinig and Maligranda [3] demonstrated that if 0<r1, rϱ<, and k0 is a measurable kernel, then

    (0u(ϰ)(0k(ϰ,τ)h(τ)dτ)ϱdϰ)1ϱC(0hr(ϰ)υ(ϰ)dϰ)1r,

    holds for the nonnegative nonincreasing function h, if

    (0u(ϰ)(s0k(ϰ,τ)dτ)ϱdϰ)1ϱC(s0υ(ϰ)dϰ)1r,

    holds for all s>0.

    Oguntuase et al. [4] proved that if 1<rϱ<, 0<bj, sj(1,r), j=1,2,...,m,  ϕ is a nonnegative and convex function on (a,d),  a<d. Define u(ϰ1,...,ϰm) and v(ϰ1,...,ϰm) as nonnegative weighted functions such that v(ϰ1,...,ϰm)=v1(ϰ1)v2(ϰ2)...vm(ϰm), then

    (b10...bm0[ϕ(Akh(ϰ1,...,ϰm))]ϱu(ϰ1,...,ϰm)dϰ1...dϰmϰ1...ϰm)1ϱC(b10...bm0ϕr(h(ϰ1,...,ϰm))v(ϰ1,...,ϰm)dϰ1...dϰmϰ1...ϰm)1r, (1.3)

    holds h(ϰ1,...,ϰm) such that a<h(ϰ1,...,ϰm)<d, if

    A(s1,...,sm)=sup0<η1,...,ηm<b1,...,bm[V1(η1)]s11r...[Vm(ηm)]sm1r×(b1η1...bmηm(k(ϰ1,...,ϰm,η1,...,ηm)K(ϰ1,...,ϰm))ϱ[V1(ϰ1)]ϱ(rs1)r×[Vm(ϰm)]ϱ(rsm)ru(ϰ1,...,ϰm)ϰ1...ϰmdϰ1...dϰm)1ϱ<,

    holds, where Vj(ηj)=ηj0[vj(τj)]1r1(τj)1r1dτj, j=1,2,....,m,

    Akh(ϰ1,...,ϰm)=1K(ϰ1,...,ϰm)ϰ10...ϰm0k(ϰ1,...,ϰm,η1,...,ηm)h(η1,...,ηm)dη1...dηm,

    and

    K(ϰ1,...,ϰm)=ϰ10...ϰm0k(ϰ1,...,ϰm,τ1,...,τm)dτ1...dτm.

    Furthermore, if C is the best feasible, then

    Cinf1<s1,...,sm<r(r1rs1)r1r...(r1rsm)r1rA(s1,...,sm).

    Oguntuase and Durojaye [5] showed that if 1<rϱ<, 0<bj, sj(1,r), j=1,2,...,m and ϕ is a nonnegative function on (a,d), a<d. Let there exist a convex function ψ on (a,d) such that

    Aψ(ϰ)ϕ(ϰ)Bψ(ϰ),

    holds for constants 0<AB< and u(ϰ1,...,ϰm), v(ϰ1,...,ϰm), which are nonnegative weighted functions such that v(ϰ1,...,ϰm)=v1(ϰ1)v2(ϰ2)...vm(ϰm). Then,

    (b10...bm0[ϕ(Akh(ϰ1,...,ϰm))]ϱu(ϰ1,...,ϰm)ϰ1...ϰmdϰ1...dϰm)1ϱC(b10...bm0ϕr(h(ϰ1,...,ϰm))v(ϰ1,...,ϰm)ϰ1...ϰmdϰ1...dϰm)1r, (1.4)

    holds h(ϰ1,...,ϰm) such that a<h(ϰ1,...,ϰm)<d if

    A(s1,...,sm)=sup0<η1,...,ηm<b1,...,bm[V1(η1)]s11r...[Vm(ηm)]sm1r×(b1η1...bmηm(k(ϰ1,...,ϰm,η1,...,ηm)K(ϰ1,...,ϰm))ϱ[V1(ϰ1)]ϱ(rs1)r[Vm(ϰm)]ϱ(rsm)r.u(ϰ1,...,ϰm)ϰ1...ϰmdϰ1...dϰm)1ϱ<,

    holds, where Vj(ηj)=ηj0[vj(τj)]1r1(τj)1r1dτj, j=1,2,....,m,

    Akh(ϰ1,...,ϰm)=1K(ϰ1,...,ϰm)ϰ10...ϰm0k(ϰ1,...,ϰm,η1,...,ηm)h(η1,...,ηm)dη1...dηm,

    and

    K(ϰ1,...,ϰm)=ϰ10...ϰm0k(ϰ1,...,ϰm,τ1,...,τm)dτ1...dτm.

    In addition, if C is the best constant, then

    CBAinf1<s1,...,sm<r(r1rs1)r1r...(r1rsm)r1rA(s1,...,sm).

    In recent years, the study of dynamic inequalities on time scales has received a lot of attention and has become a major field in pure and applied mathematics. The general idea is to prove a result for a dynamic inequality where the domain of the unknown function is a so-called time scale T, which may be an arbitrary closed subset of the real numbers R. The case is when the time scale is equal to the reals or to the integers representing the classical theories of continuous and of discrete inequalities. Any inequality that can be proven on time scales should be avoided twice, once in the continuous case and once in the discrete case.

    Saker et al. [6] established the time scale version of (1.1) as the following: Let T be a time scale with a,bT, 1<rϱ<, hCrd([a,b]T,R) be a nonnegative the function, and f,gCrd((a,b)T,R) be positive functions. Then,

    (baf(ϰ)(σ(ϰ)ah(τ)Δτ)ϱΔϰ)1ϱC(bahr(ϰ)g(ϰ)Δϰ)1r, (1.5)

    holds, if

    K=supa<ϰ<b(bϰf(τ)Δτ)1ϱ(σ(ϰ)ag1ϖ(τ)Δτ)1ϖ<,  where  ϖ=rr1.

    Furthermore, for the constant C in (1.5), the following estimate is satisfied:

    KC(1+ϱϖ)1ϱ(1+ϖϱ)1ϖK.

    In the same paper [6], the authors proved the dual form for (1.5) in the following: Let T be a time scale with a,bT, 1<rϱ<, hCrd([a,b]T,R) be a nonnegative the function, and f,gCrd((a,b)T,R) be positive functions. Then,

    (baf(ϰ)(bxh(τ)Δτ)ϱΔϰ)1ϱC(bahr(ϰ)g(ϰ)Δϰ)1r, (1.6)

    holds, if

    L=supa<ϰ<b(σ(ϰ)af(τ)Δτ)1ϱ(bxg1ϖ(τ)Δτ)1ϖ<,  where  ϖ=rr1.

    Furthermore, for the constant C in (1.6), the following estimate is satisfied:

    LC(1+ϱϖ)1ϱ(1+ϖϱ)1ϖL.

    For more details about the dynamic inequalities of Hardy-type, we refer the reader to the papers [7,8,9,10,11] and the book by Agarwal et al. [12].

    The aim of this paper is to demonstrate multidimensional Hardy-type inequalities with general kernels on time scales. As special cases of our results on time scales, when T=R, we get the integral inequalities (1.3) and (1.4) proved by Oguntuase et al. [4] and Oguntuase and Durojaye [5], respectively. Also, as special cases of the main reslts, when T=N, we can obtain other inequalities in the discrete calculus, which are essentially new for the reader.

    The following is the structure of this document. Section 2 covers the fundamentals of time scales calculus. In Section 3, we prove our main results, where some classical and modern inequalities are derived.

    This section includes definitions and lemmas which are fundamentals of time scales calculus; see [13,14,15]. Consider the time scale T and τT. The forward jump operator is defined by: σ(τ)=inf{vT:v>τ}. A function Φ:TR, is characterized as rd-continuous when it exhibits continuity at every right-dense point within T and possesses finite left-sided limits at left-dense points in T. The set of all such rd-continuous functions is ushered by Crd(T,R), and for any function Φ:TR, the notation Φσ(τ) denotes Φ(σ(τ)).

    The derivatives of Φϖ and Φ/ϖ (where ϖϖσ0) of two differentiable functions Φ and ϖ are given by

    (Φϖ)Δ=ΦΔϖ+ΦσϖΔ=ΦϖΔ+ΦΔϖσ, (Φϖ)Δ=ΦΔϖΦϖΔϖϖσ.

    If GΔ(r)=ϖ(r), then the delta integral is predefined as

    rr0ϖ(t)Δt=G(r)G(r0).

    It can be demonstrated that if ϖCrd(T,R), then the Cauchy integral G(r)=rr0ϖ(t)Δt exists, r0T, and it satisfies GΔ(r)=ϖ(r). The integration by parts formula is provided by

    υυ0λ(τ)φΔ(τ)Δτ=[λ(τ)φ(τ)]υυ0υυ0λΔ(τ)φσ(τ)Δτ.

    The time scale chain rule is stated as follows:

    (φg)Δ(τ)=φ(g(ϰ))gΔ(τ), where ϰ[τ,σ(τ)], (2.1)

    where it is supposed that φ:RR is continuously differentiable and g:TR is delta differentiable.

    The Hölder inequality is expressed as:

    b1a1...bmam|h(τ)g(τ)|Δτ1...Δτm(b1a1...bmam|h(τ)|γΔτ1...Δτm)1γ(b1a1...bmam|g(τ)|νΔτ1...Δτm)1ν, (2.2)

    where a1,...,am,b1,...,bmT, h,g:TmR such that

    h(τ)=h(τ1,τ2,...,τm), g(τ)=g(τ1,τ2,...,τm),

    γ>1 and 1/γ+1/ν=1.

    Theorem 2.1. (Jensen's inequality) Assume that aj,bjT, j=1,2,..,m, and c,dR. If g:Tm(c,d) is rd-continuous and Φ:(c,d)R is continuous and convex, then

    Φ(1b1a1...bmamh(ξ,τ)Δτb1a1...bmamh(ξ,τ)g(τ)Δτ)1b1a1...bmamh(ξ,τ)Δτb1a1...bmamh(ξ,τ)Φ(g(τ))Δτ, (2.3)

    where

    Δτ=Δτ1...Δτm, h(ξ,τ)=h(ξ1,...,ξm,τ1,...,τm)andg(τ)=g(τ1,...,τm).

    Theorem 2.2. (Minkowski's inequality) Assume that aj,bjT, j=1,2,...,m, and γ1 . If k:Tm×TmR, w,h:TmR are nonnegative rd-continuous functions, then

    (b1a1...bmamw(ξ)(b1a1...bmamh(τ)k(ξ,τ)Δτ)γΔξ)1γb1a1...bmamh(τ)(b1a1...bmamw(ξ)kγ(ξ,τ)Δξ)1γΔτ, (2.4)

    where

    k(ξ,τ)=k(ξ1,...,ξm,τ1,...,τm),w(ξ)=w(ξ1,...,ξm)andh(τ)=h(τ1,...,τm).

    We shall assume in this work that the functions are nonnegative rd-continuous functions and the considered integrals exist (and are finite, i.e., convergent). Throughout, we are using the following assumption: Define the nonnegative functions h:TmR, k:Tm×TmR as the following:

    h(η)=h(η1,...,ηm) and k(ξ,η)=k(ξ1,...,ξm,η1,...,ηm).

    Also, we define the general Hardy operator Ak as the following:

    Akh(ξ1,...,ξm)=1K(ξ1,...,ξm)σ(ξ1)a1...σ(ξm)amk(ξ1,...,ξm,η1,...,ηm)h(η1,...,ηm)Δη,

    with

    K(ξ1,...,ξm)=σ(ξ1)a1...σ(ξm)amk(ξ1,...,ξm,τ1,...,τm)Δτ,

    and

    A(s1,...,sm)=supaj<ηj<bj(b1η1...bmηm(k(ξ,η)K(ξ))ϱ[Vσ1(ξ1)]ϱ(μs1)μ...[Vσm(ξm)]ϱ(μsm)μ×u(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ)1ϱ[Vσ1(η1)]s11μ...[Vσm(ηm)]sm1μ, (3.1)

    where Vj(ηj)=ηjaj[vj(τj)]1μ1(σ(τj)aj)1μ1Δτj, j=1,2,....,m.

    Mathematical applications of this work are given in the form of remarks, examples, and corollaries. Now, we start with the time scale version of (1.3).

    Theorem 3.1. Let aj,bjT, 1<μϱ<, sj(1,μ), j=1,2,...,m, and ψ be a nonnegative and convex function on (a,d), a<d. We define u(ξ1,...,ξm) and v(ξ1,...,ξm) as nonnegative weighted functions such that

    v(ξ1,...,ξm)=v1(ξ1)v2(ξ2)...vm(ξm). (3.2)

    If (3.1) holds, then

    (b1a1...bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ)1ϱ(μ1μs1)μ1μ...(μ1μsm)μ1μA(s1,...,sm)×(b1a1...bmamψμ(h(η))v(η)(σ(η1)a1)...(σ(ηm)am)Δη)1μ. (3.3)

    Proof. By applying (2.3), we see that

    b1a1...bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ=b1a1...bmam(ψ(1K(ξ)σ(ξ1)a1...σ(ξm)amk(ξ,η)h(η)Δη))ϱ×u(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξb1a1...bmam(1K(ξ)σ(ξ1)a1...σ(ξm)amk(ξ,η)ψ(h(η))Δη)ϱ×u(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ=b1a1...bmamu(ξ)Kϱ(ξ)Jϱ(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ, (3.4)

    where

    J(ξ)=σ(ξ1)a1...σ(ξm)amk(ξ,η)ψ(h(η))Δη. (3.5)

    Denote ψμ(h(η))v1(η1)...vm(ηm)(σ(η1)a1)...(σ(ηm)am)=Ψ(η) and substitute it into (3.5) to obtain that

    J(ξ)=σ(ξ1)a1...σ(ξm)amk(ξ,η)[Ψ(η)]1μ[v1(η1)]1μ...[vm(ηm)]1μ×[Vσ1(η1)]s11μ...[Vσm(ηm)]sm1μ[Vσ1(η1)]1s1μ...[Vσm(ηm)]1smμ×(σ(η1)a1)1μ...(σ(ηm)am)1μΔη, (3.6)

    where Vj(ηj)=ηjaj[vj(τj)]1μ1(σ(τj)aj)1μ1Δτj, j=1,2,...,m. Applying ( 2.2) with μ>1 and μ/(μ1) in (3.6), we see that

    J(ξ)(σ(ξ1)a1...σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s11...[Vσm(ηm)]sm1Δη)1μ×[σ(ξ1)a1...σ(ξm)am[Vσ1(η1)]1s1μ1...[Vσm(ηm)]1smμ1×[v1(η1)]1μ1...[vm(ηm)]1μ1(σ(η1)a1)1μ1...(σ(ηm)am)1μ1Δη]μ1μ. (3.7)

    Substituting (3.7) into (3.4), we have

    b1a1...bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξb1a1...bmamu(ξ)(σ(ξ1)a1)...(σ(ξm)am)Kϱ(ξ)×(σ(ξ1)a1...σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s11...[Vσm(ηm)]sm1Δη)ϱμ×[σ(ξ1)a1...σ(ξm)am[Vσ1(η1)]1s1μ1...[Vσm(ηm)]1smμ1×[v1(η1)]1μ1...[vm(ηm)]1μ1(σ(η1)a1)1μ1...(σ(ηm)am)1μ1Δη]ϱ(μ1)μΔξ. (3.8)

    Since

    Vj(ηj)=ηjaj[vj(τj)]1μ1(σ(τj)aj)1μ1Δτj, j=1,2,...,m,

    then

    VΔj(ηj)=[vj(ηj)]1μ1(σ(ηj)aj)1μ1>0. (3.9)

    Therefore, the function Vj is increasing. Applying the chain rule formula (2.1) on [Vj(ηj)]1(sj1/(μ1)), we obtain

    [[Vj(ηj)]1sj1μ1]Δ=[[Vj(ηj)]μsjμ1]Δ=(μsjμ1)[Vj(ξj)](sj1)μ1VΔj(ηj),  (3.10)

    where ξj[ηj,σ(ηj)], j=1,2,...,m. Thus, by substituting (3.9) into (3.10), we see

    [[Vj(ηj)]μsjμ1]Δ=(μsjμ1)[Vj(ξj)](sj1)μ1[vj(ηj)]1μ1(σ(ηj)aj)1μ1. (3.11)

    Since ξjσ(ηj) and Vj is increasing, we have

    Vj(ξj)Vσj(ηj).

    Using the relation 1<sj<μ, j=1,2,...,m, we get

    [Vj(ξj)](sj1)μ1[Vσj(ηj)](sj1)μ1. (3.12)

    Substituting (3.12) into (3.11), we have

    [[Vj(ηj)]μsjμ1]Δ(μsjμ1)[Vσj(ηj)](sj1)μ1[vj(ηj)]1μ1(σ(ηj)aj)1μ1,

    and then

    σ(ξj)aj[[Vj(ηj)]μsjμ1]ΔΔηj(μsjμ1)σ(ξj)aj[Vσj(ηj)](sj1)μ1[vj(ηj)]1μ1(σ(ηj)aj)1μ1Δηj.

    Thus, we have (note Vj(aj)=0) that

    σ(ξj)aj[Vσj(ηj)](sj1)μ1[vj(ηj)]1μ1(σ(ηj)aj)1μ1Δηj(μ1μsj)σ(ξj)aj[[Vj(ηj)]μsjμ1]ΔΔηj=(μ1μsj)[Vσj(ξj)]μsjμ1, j=1,2,...,m, (3.13)

    and then we have from (3.13) that

    σ(ξ1)a1...σ(ξm)am[Vσ1(η1)]1s1μ1...[Vσm(ηm)]1smμ1×[v1(η1)]1μ1...[vm(ηm)]1μ1(σ(η1)a1)1μ1...(σ(ηm)am)1μ1Δη=(σ(ξ1)a1[Vσ1(η1)](s11)μ1[v1(η1)]1μ1(σ(η1)a1)1μ1Δη1)×....×(σ(ξm)am[Vσm(ηm)](sm1)μ1[vm(ηm)]1μ1(σ(ηm)am)1μ1Δηm)(μ1μs1)...(μ1μsm)[Vσ1(ξ1)]μs1μ1...[Vσm(ξm)]μsmμ1.

    Substituting into (3.8), we see that

    b1a1...bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ(μ1μs1)ϱ(μ1)μ...(μ1μsm)ϱ(μ1)μb1a1...bmam[Vσ1(ξ1)]ϱ(μs1)μ...[Vσm(ξm)]ϱ(μsm)μ×(σ(ξ1)a1...σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s11...[Vσm(ηm)]sm1Δη)ϱμ×u(ξ)Kϱ(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ. (3.14)

    Applying (2.4) on the term

    b1a1...bmam(σ(ξ1)a1...σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s11...[Vσm(ηm)]sm1Δη)ϱμ×[Vσ1(ξ1)]ϱ(μs1)μ...[Vσm(ξm)]ϱ(μsm)μu(ξ)Kϱ(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ,

    with ϱ/μ>1, we observe that

    [b1a1...bmam(σ(ξ1)a1...σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s11...[Vσm(ηm)]sm1Δη)ϱμ×[Vσ1(ξ1)]ϱ(μs1)μ...[Vσm(ξm)]ϱ(μsm)μu(ξ)Kϱ(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ]μϱb1a1...bmamΨ(η)[Vσ1(η1)]s11...[Vσm(ηm)]sm1×[b1η1...bmηmkϱ(ξ,η)[Vσ1(ξ1)]ϱ(μs1)μ...[Vσm(ξm)]ϱ(μsm)μ×u(ξ)Kϱ(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ]μϱΔη. (3.15)

    Substituting (3.15) into (3.14), we obtain

    b1a1...bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ(μ1μs1)ϱ(μ1)μ...(μ1μsm)ϱ(μ1)μ[b1a1...bmamΨ(η)[Vσ1(η1)]s11...[Vσm(ηm)]sm1×(b1η1...bmηmkϱ(ξ,η)[Vσ1(ξ1)]ϱ(μs1)μ...[Vσm(ξm)]ϱ(μsm)μ×u(ξ)Kϱ(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ)μϱΔη]ϱμ. (3.16)

    Using the assumptions (3.1) and (3.2), the inequality (3.16 ) becomes

    b1a1...bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)a1)...(σ(ξm)am)ΔξAϱ(s1,...,sm)(μ1μs1)ϱ(μ1)μ...(μ1μsm)ϱ(μ1)μ[b1a1...bmamΨ(η)Δη]ϱμ=(μ1μs1)ϱ(μ1)μ...(μ1μsm)ϱ(μ1)μAϱ(s1,...,sm)×[b1a1...bmamψμ(h(η))v1(η1)...vm(ηm)(σ(η1)a1)...(σ(ηm)am)Δη]ϱμ=(μ1μs1)ϱ(μ1)μ...(μ1μsm)ϱ(μ1)μAϱ(s1,...,sm)×[b1a1...bmamψμ(h(η))v(η1,..,ηm)(σ(η1)a1)...(σ(ηm)am)Δη]ϱμ, (3.17)

    and then

    (b1a1...bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ)1ϱ(μ1μs1)μ1μ...(μ1μsm)μ1μA(s1,...,sm)×[b1a1...bmamψμ(h(η))v(η1,..,ηm)(σ(η1)a1)...(σ(ηm)am)Δη]1μ,

    which is (3.3).

    Remark 3.2. If T=R, then (3.3) gives the inequality (1.3) proved by Oguntuase, Persson, and Essel [4].

    Corollary 3.3. In Theorem 3.1, let T=Z, aj,bjZ, 1<μϱ<, sj(1,μ), j=1,2,...,m, and ψ be a nonnegative and convex sequence on (a,d), a<d. Define u(ξ1,...,ξm) and v(ξ1,...,ξm) as nonnegative weighted sequences such that

    v(ξ1,...,ξm)=v1(ξ1)v2(ξ2)...vm(ξm).

    Then

    (b11ξ1=a1...bm1ξm=am[ψ(Akh(ξ))]ϱu(ξ)(ξ1+1a1)...(ξm+1am))1ϱ(μ1μs1)μ1μ...(μ1μsm)μ1μA(s1,...,sm)×(b11η1=a1...bm1ηm=amψμ(h(η))v(η)(η1+1a1)...(ηm+1am))1μ,

    provided that

    A(s1,...,sm)=supaj<ηj<bj(b11ξ1=η1...bm1ξm=ηm(k(ξ,η)K(ξ))ϱ[V1(ξ1+1)]ϱ(μs1)μ...[Vm(ξm+1)]ϱ(μsm)μ×u(ξ)(ξ1+1a1)...(ξm+1am))1ϱ[V1(η1+1)]s11μ...[Vm(ηm+1)]sm1μ<,

    where

    Akh(ξ1,...,ξm)=1K(ξ1,...,ξm)ξ1η1=a1...ξmηm=amk(ξ1,...,ξm,η1,...,ηm)h(η1,...,ηm),
    K(ξ1,...,ξm)=ξ1τ1=a1...ξmτm=amk(ξ1,...,ξm,τ1,...,τm),

    and

    Vj(ηj)=ηj1τj=aj[vj(τj)]1μ1(τj+1aj)1μ1, j=1,2,....,m.

    Example 3.4. If we put m=1, k(ξ,η)=1, ψ(x)=x, f(ξ)=u(ξ)(σ(ξ)a)ϱ+1, and g(η)=v(η)(σ(η)a)μ+1, in Theorem 3.1, then we get the inequality (1.5) proved by Saker et al. [6].

    Theorem 3.5. Let aj,bjT, 1<μϱ<, sj(1,μ), j=1,2,...,m, and ϕ be a nonnegative function on (a,d), a<dsuch that

    Aψ(ξ)ϕ(ξ)Bψ(ξ), (3.18)

    holds for constants 0<AB<, and ψ is a nonnegative and convex function. We define u(ξ1,...,ξm) and v(ξ1,...,ξm) as nonnegative weighted functions such that

    v(ξ1,...,ξm)=v1(ξ1)v2(ξ2)...vm(ξm). (3.19)

    If (3.1) holds, then

    (b1a1...bmam[ϕ(Akh(ξ))]ϱu(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ)1ϱBA(μ1μs1)μ1μ...(μ1μsm)μ1μA(s1,...,sm)×(b1a1...bmamϕμ(h(η))v(η1,...,ηm)(σ(η1)a1)...(σ(ηm)am)Δη)1μ. (3.20)

    Proof. From (3.18) and by applying (2.3), we see that

    b1a1...bmam[ϕ(Akh(ξ))]ϱu(ξ)(σ(ξ1)a1)...(σ(ξm)am)ΔξBϱb1a1...bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ=Bϱb1a1...bmam[ψ(1K(ξ)σ(ξ1)a1...σ(ξm)amk(ξ,η)h(η)Δη)]ϱ×u(ξ)(σ(ξ1)a1)...(σ(ξm)am)ΔξBϱb1a1...bmam(1K(ξ)σ(ξ1)a1...σ(ξm)amk(ξ,η)ψ(h(η))Δη)ϱ×u(ξ)(σ(ξ1)a1)...(σ(ξm)am)Δξ=Bϱb1a1...bmamu(ξ)Kϱ(ξ)Jϱ(ξ)Δξ(σ(ξ1)a1)...(σ(ξm)am), (3.21)

    where

    J(ξ)=σ(ξ1)a1...σ(ξm)amk(ξ,η)ψ(h(η))Δη. (3.22)

    Denote ψμ(h(η))v1(η1)..vm(ηm)(σ(η1)a1)..(σ(ηm)am)=Ψ(η) and substitute it into (3.22) to obtain that

    J(ξ)=σ(ξ1)a1...σ(ξm)amk(ξ,η)[Ψ(η)]1μ[v1(η1)]1μ...[vm(ηm)]1μ×(σ(η1)a1)1μ...(σ(ηm)am)1μΔη=σ(ξ1)a1...σ(ξm)amk(ξ,η)[Ψ(η)]1μ[Vσ1(η1)]s11μ...[Vσm(ηm)]sm1μ×[Vσ1(η1)]1s1μ...[Vσm(ηm)]1smμ[v1(η1)]1μ...[vm(ηm)]1μ×(σ(η1)a1)1μ...(σ(ηm)am)1μΔη, (3.23)

    where Vj(ηj)=ηjaj[vj(τj)]1μ1(σ(τj)aj)1μ1Δτj, j=1,2,....,m. Applying (2.2) with μ>1 and μ/(μ1) on (3.23), we see that

    J(ξ)(σ(ξ1)a1...σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s11...[Vσm(ηm)]sm1Δη)1μ×[σ(ξ1)a1...σ(ξm)am[Vσ1(η1)]1s1μ1...[Vσm(ηm)]1smμ1×[v1(η1)]1μ1...[vm(ηm)]1μ1(σ(η1)a1)1μ1...(σ(ηm)am)1μ1Δη]μ1μ. (3.24)

    Substituting (3.24) into (3.21), we have

    b1a1...bmam[ϕ(Akh(ξ))]ϱu(ξ)(σ(ϰ1)a1)...(σ(ϰm)am)ΔξBϱb1a1...bmamu(ξ)(σ(ξ1)a1)...(σ(ξm)am)Kϱ(ξ)×(σ(ξ1)a1...σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s11...[Vσm(ηm)]sm1Δη)ϱμ×[σ(ξ1)a1...σ(ξm)am[Vσ1(η1)]1s1μ1...[Vσm(ηm)]1smμ1×[v1(η1)]1μ1...[vm(ηm)]1μ1(σ(η1)a1)1μ1...(σ(ηm)am)1μ1Δη]ϱ(μ1)μΔξ. (3.25)

    Since

    Vj(ηj)=ηjaj[vj(τj)]1μ1(σ(τj)aj)1μ1Δτj, j=1,2,...,m,

    then

    VΔj(ηj)=[vj(ηj)]1μ1(σ(ηj)aj)1μ1>0. (3.26)

    Therefore, the function Vj is increasing. Applying the chain rule formula (2.1) on [Vj(ηj)]1(sj1/(μ1)), we obtain

    [[Vj(ηj)]1(sj1)μ1]Δ=[[Vj(ηj)]μsjμ1]Δ=(μsjμ1)[Vj(ξj)](sj1)μ1VΔj(ηj),  (3.27)

    where ξj[ηj,σ(ηj)], j=1,2,...,m. Thus, by substituting (3.26) into (3.27), we see that

    [[Vj(ηj)]μsjμ1]Δ=(μsjμ1)[Vj(ξj)](sj1)μ1[vj(ηj)]1μ1(σ(ηj)aj)1μ1. (3.28)

    Since ξjσ(ηj) and Vj is increasing, we have

    Vj(ξj)Vσj(ηj).

    Using the relation 1<sj<μ, j=1,2,..,m, we see that

    [Vj(ξj)](sj1)μ1[Vσj(ηj)](sj1)μ1. (3.29)

    Substituting (3.29) into (3.28), we have

    [[Vj(ηj)]μsjμ1]Δ(μsjμ1)[Vσj(ηj)](sj1)μ1[vj(ηj)]1μ1(σ(ηj)aj)1μ1,

    and then

    σ(ξj)aj[[Vj(ηj)]μsjμ1]ΔΔηj(μsjμ1)σ(ξj)aj[Vσj(ηj)](sj1)μ1[vj(ηj)]1μ1(σ(ηj)aj)1μ1Δηj.

    Thus, we have (note Vj(aj)=0) that

    σ(ξj)aj[Vσj(ηj)](sj1)μ1[vj(ηj)]1μ1(σ(ηj)aj)1μ1Δηj(μ1μsj)σ(ξj)aj[[Vj(ηj)]μsjμ1]ΔΔηj=(μ1μsj)[Vσj(ξj)]μsjμ1, j=1,2,...,m, (3.30)

    and then we have from (3.30) that

    \begin{eqnarray*} &&\int_{a_{1}}^{\sigma (\xi _{1})}...\int_{a_{m}}^{\sigma (\xi _{m})}\left[ V_{1}^{\sigma }(\eta _{1})\right] ^{\frac{1-s_{1}}{\mu -1}}...\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{\frac{1-s_{m}}{\mu -1}} \\ &&\times \left[ v_{1}(\eta _{1})\right] ^{\frac{-1}{\mu -1}}...\left[ v_{m}(\eta _{m})\right] ^{\frac{-1}{\mu -1}}\left( \sigma \left( \eta _{1}\right) -a_{1}\right) ^{\frac{1}{\mu -1}}...\left( \sigma \left( \eta _{m}\right) -a_{m}\right) ^{\frac{1}{\mu -1}}\Delta \mathbf{\eta } \\ &=&\left( \int_{a_{1}}^{\sigma (\xi _{1})}\left[ V_{1}^{\sigma }(\eta _{1}) \right] ^{-\frac{(s_{1}-1)}{\mu -1}}\left[ v_{1}(\eta _{1})\right] ^{\frac{-1 }{\mu -1}}\left( \sigma \left( \eta _{1}\right) -a_{1}\right) ^{\frac{1}{\mu -1}}\Delta \eta _{1}\right) \\ &&\times ...\times \left( \int_{a_{m}}^{\sigma (\xi _{m})}\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{-\frac{(s_{m}-1)}{\mu -1}}\left[ v_{m}(\eta _{m})\right] ^{\frac{-1}{\mu -1}}\left( \sigma \left( \eta _{m}\right) -a_{m}\right) ^{\frac{1}{\mu -1}}\Delta \eta _{m}\right) \\ &\leq &\left( \frac{\mu -1}{\mu -s_{1}}\right) ...\left( \frac{\mu -1}{\mu -s_{m}}\right) \left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\mu -s_{1}}{ \mu -1}}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{\mu -s_{m}}{\mu -1 }}. \end{eqnarray*}

    Substituting into (3.25), we see

    \begin{eqnarray} &&\int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \phi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{\xi })}{ \left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi } \\ &\leq &B^{\varrho }\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\varrho (\mu -1)}{\mu }} \\ &&\times \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left( \int_{a_{1}}^{\sigma (\xi _{1})}...\int_{a_{m}}^{\sigma (\xi _{m})}k^{\mu }( \mathbf{\xi , \eta })\Psi (\mathbf{\eta })\left[ V_{1}^{\sigma }(\eta _{1}) \right] ^{s_{1}-1}...\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{s_{m}-1}\Delta \mathbf{\eta }\right) ^{\frac{\varrho }{\mu }} \\ &&\times \left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\varrho \left( \mu -s_{1}\right) }{\mu }}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{ \varrho \left( \mu -s_{m}\right) }{\mu }}\frac{u(\mathbf{\xi })}{K^{\varrho }(\mathbf{\xi })\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }. \end{eqnarray} (3.31)

    Applying (2.4) on the term

    \begin{eqnarray*} &&\int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left( \int_{a_{1}}^{\sigma (\xi _{1})}...\int_{a_{m}}^{\sigma (\xi _{m})}k^{\mu }(\mathbf{\xi , \eta } )\Psi (\mathbf{\eta })\left[ V_{1}^{\sigma }(\eta _{1})\right] ^{s_{1}-1}... \left[ V_{m}^{\sigma }(\eta _{m})\right] ^{s_{m}-1}\Delta \mathbf{\eta } \right) ^{\frac{\varrho }{\mu }} \\ &&\times \left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\varrho \left( \mu -s_{1}\right) }{\mu }}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{ \varrho \left( \mu -s_{m}\right) }{\mu }}\frac{u(\mathbf{\xi })}{K^{\varrho }(\mathbf{\xi })\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }, \end{eqnarray*}

    with \varrho /\mu >1, we observe

    \begin{eqnarray} &&\left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left( \int_{a_{1}}^{\sigma (\xi _{1})}...\int_{a_{m}}^{\sigma (\xi _{m})}k^{\mu }( \mathbf{\xi , \eta })\Psi (\mathbf{\eta })\left[ V_{1}^{\sigma }(\eta _{1}) \right] ^{s_{1}-1}...\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{s_{m}-1}\Delta \mathbf{\eta }\right) ^{\frac{\varrho }{\mu }}\right. \\ &&\left. \times \left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\varrho \left( \mu -s_{1}\right) }{\mu }}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{\varrho \left( \mu -s_{m}\right) }{\mu }}\frac{u(\mathbf{\xi })}{ K^{\varrho }(\mathbf{\xi })\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }\right] ^{\frac{\mu }{ \varrho }} \\ &\leq &\int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\Psi (\mathbf{\eta })\left[ V_{1}^{\sigma }(\eta _{1})\right] ^{s_{1}-1}...\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{s_{m}-1} \\ &&\times \left[ \int_{\eta _{1}}^{b_{1}}...\int_{\eta _{m}}^{b_{m}}k^{\varrho }(\mathbf{\xi , \eta })\left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\varrho \left( \mu -s_{1}\right) }{\mu }}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{\varrho \left( \mu -s_{m}\right) }{ \mu }}\right. \\ &&\times \left. \frac{u(\mathbf{\xi })}{K^{\varrho }(\mathbf{\xi })\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) } \Delta \mathbf{\xi }\right] ^{\frac{\mu }{\varrho }}\Delta \mathbf{\eta }. \end{eqnarray} (3.32)

    Substituting (3.32) into (3.31), we obtain

    \begin{align} & \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \phi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{\xi })}{ \left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi } \\ & \leq B^{\varrho }\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}\left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\Psi ( \mathbf{\eta })\left[ V_{1}^{\sigma }(\eta _{1})\right] ^{s_{1}-1}...\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{s_{m}-1}\right. \\ & \times \left( \int_{\eta _{1}}^{b_{1}}...\int_{\eta _{m}}^{b_{m}}k^{\varrho }(\mathbf{\xi , \eta })\left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\varrho \left( \mu -s_{1}\right) }{\mu }}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{\varrho \left( \mu -s_{m}\right) }{ \mu }}\right. \\ & \times \left. \left. \frac{u(\mathbf{\xi })}{K^{\varrho }(\mathbf{\xi } )\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }\right) ^{\frac{\mu }{\varrho } }\Delta \mathbf{\eta }\right] ^{\frac{\varrho }{\mu }}. \end{align} (3.33)

    Using the assumptions (3.1), (3.18), and (3.19), the inequality (3.33) becomes

    \begin{eqnarray} &&\int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \phi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{\xi })}{ \left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi } \\ &\leq &B^{\varrho }A^{\varrho }(s_{1}, ..., s_{m})\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}\left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\Psi (\mathbf{\eta })\Delta \mathbf{\eta }\right] ^{\frac{\varrho }{\mu }} \\ &=&B^{\varrho }\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}A^{\varrho }(s_{1}, ..., s_{m}) \\ &&\times \left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\psi ^{\mu }(h( \mathbf{\eta }))\frac{v_{1}(\eta _{1})...v_{m}(\eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{\eta }\right] ^{\frac{\varrho }{\mu }} \\ &\leq &\frac{B^{\varrho }}{A^{\varrho }}\left( \frac{\mu -1}{\mu -s_{1}} \right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}} \right) ^{\frac{\varrho (\mu -1)}{\mu }}A^{\varrho }(s_{1}, ..., s_{m}) \\ &&\times \left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\phi ^{\mu }(h( \mathbf{\eta }))\frac{v_{1}(\eta _{1})...v_{m}(\eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{\eta }\right] ^{\frac{\varrho }{\mu }} \\ &=&\frac{B^{\varrho }}{A^{\varrho }}\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{ \frac{\varrho (\mu -1)}{\mu }}A^{\varrho }(s_{1}, ..., s_{m}) \\ &&\times \left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\phi ^{\mu }(h( \mathbf{\eta }))\frac{v(\eta _{1}, .., \eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{ \eta }\right] ^{\frac{\varrho }{\mu }}, \end{eqnarray} (3.34)

    and then

    \begin{eqnarray*} &&\left( \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \phi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{ \xi })}{\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }\right) ^{\frac{1}{\varrho }} \\ &\leq &\frac{B}{A}\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\mu -1}{ \mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\mu -1}{\mu } }A(s_{1}, ..., s_{m}) \\ &&\times \left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\phi ^{\mu }(h( \mathbf{\eta }))\frac{v(\eta _{1}, .., \eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{ \eta }\right] ^{\frac{1}{\mu }}, \end{eqnarray*}

    which is (3.20).

    Remark 3.6. If \mathbb{T=R} , then (3.20) gives the inequality (1.4) proved by Oguntuase and Durojaye [5].

    Remark 3.7. If A=B=1 in Theorem 3.5, then we get Theorem 3.1.

    Remark 3.8. It is obvious that we can use another technique to prove the inequality (3.20) in Theorem 3.5 by using Theorem 3.1 with (3.1) and (3.18) as follows:

    \begin{eqnarray*} &&\left( \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \phi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{ \xi })}{\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }\right) ^{\frac{1}{\varrho }} \\ &\leq &B\left( \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \psi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{ \xi })}{\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }\right) ^{\frac{1}{\varrho }} \\ &\leq &B\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\mu -1}{\mu } }...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\mu -1}{\mu } }A(s_{1}, ..., s_{m}) \\ &&\times \left( \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\psi ^{\mu }(h( \mathbf{\eta }))\frac{v(\eta _{1}, ..., \eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{ \eta }\right) ^{\frac{1}{\mu }} \\ &\leq &\frac{B}{A}\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\mu -1}{ \mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\mu -1}{\mu } }A(s_{1}, ..., s_{m}) \\ &&\times \left( \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\phi ^{\mu }(h( \mathbf{\eta }))\frac{v(\eta _{1}, ..., \eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{ \eta }\right) ^{\frac{1}{\mu }}. \end{eqnarray*}

    In this work, new multidimensional Hardy-type inequalities with general kernels have been developed in the context of time scales, a mathematical theory that unifies continuous and discrete analysis. These inequalities were proven using the n-dimensional time scale versions of Holder's inequality, Jensen’s inequality, and Minkowski’s inequality. Special cases were derived for \mathbb{T}=\mathbb{N} , which are essentially novel contributions to the field. These results extend the applicability of Hardy-type inequalities, providing new insights and tools that bridge discrete and continuous mathematical analysis.

    Ghada AlNemer: Writing-review editing and Funding; M. Zakarya: Writing-review editing and Funding; H. M. Rezk: Investigation, Software, Supervision, Writing-original draft; A. I. Saied: Investigation, Software, Supervision, Writing-original draft. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through large Research Project under grant number RGP 2/190/45. Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R45), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    The authors declare that there are no conflict of interest in this paper.



    [1] B. Opic, A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics, 219, Harlow: Longman Scientific and Technical; New York: John Wiley and Sons, 1990.
    [2] V. D. Stepanov, Boundedness of linear integral operators on a class of monotone functions, Sib. Math. J., 32 (1992), 540–542. https://doi.org/10.1007/bf00970496 doi: 10.1007/bf00970496
    [3] H. Heinig, L. Maligranda, Weighted inequalities for monotone and concave functions, Stud. Math., 116 (1995), 133–165. http://eudml.org/doc/216224
    [4] J. A. Oguntuase, L. E. Persson, E. K. Essel, Multidimensional Hardy-type inequalities with general kernels, J. Math. Anal. Appl., 348 (2008), 411–418. https://doi.org/10.1016/j.jmaa.2008.07.053 doi: 10.1016/j.jmaa.2008.07.053
    [5] J. A. Oguntuase, P. Durojaye, Some new multidimensional Hardy-type inequalities with kernels via convexity, Publ. I. Math., 93 (2013), 153–164. https://doi.org/10.2298/PIM1307153O doi: 10.2298/PIM1307153O
    [6] S. H. Saker, R. R. Mahmoud, A. Peterson, Weighted Hardy-type inequalities on time scales with applications, Mediterr. J. Math., 13 (2016), 585–606. https://doi.org/10.1007/s00009-014-0514-y doi: 10.1007/s00009-014-0514-y
    [7] D. O'Regan, H. M. Rezk, S. H. Saker, Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with Kernels, Results Math., 73 (2018), 146. https://doi.org/10.1007/s00025-018-0908-4 doi: 10.1007/s00025-018-0908-4
    [8] S. H. Saker, H. M. Rezk, I. Abohela, D. Baleanu, Refinement multidimensional dynamic inequalities with general kernels and measures, J. Inequal. Appl., 2019 (2019), 306. https://doi.org/10.1186/s13660-019-2255-8 doi: 10.1186/s13660-019-2255-8
    [9] E. Awwad, A. I. Saied, Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal., 16 (2022), 393–412. https://doi.org/10.7153/jmi-2022-16-29 doi: 10.7153/jmi-2022-16-29
    [10] P. Řehák, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 942973. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
    [11] L. Yin, F. Qi, Some integral inequalities on time scales, Results Math., 64 (2013), 371–381. https://doi.org/10.1007/s00025-013-0320-z doi: 10.1007/s00025-013-0320-z
    [12] R. P. Agarwal, D. O'Regan, S. H. Saker, Hardy type inequalities on time scales, Switzerland: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-44299-0
    [13] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science & Business Media, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [14] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser, 2003. https://doi.org/10.1007/978-0-8176-8230-9
    [15] M. Bohner, S. Georgiev, Multivariable dynamic calculus on time scales, Switzerland: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9
  • This article has been cited by:

    1. Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk, Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales, 2024, 9, 2473-6988, 31926, 10.3934/math.20241534
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(852) PDF downloads(39) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog