Citation: M. Zakarya, Ghada AlNemer, A. I. Saied, H. M. Rezk. Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales[J]. AIMS Mathematics, 2024, 9(8): 21414-21432. doi: 10.3934/math.20241040
[1] | Xianyong Huang, Shanhe Wu, Bicheng Yang . A Hardy-Hilbert-type inequality involving modified weight coefficients and partial sums. AIMS Mathematics, 2022, 7(4): 6294-6310. doi: 10.3934/math.2022350 |
[2] | Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk . Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534 |
[3] | Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126 |
[4] | Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas . Some (p, q)-Hardy type inequalities for (p, q)-integrable functions. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006 |
[5] | Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250 |
[6] | Limin Yang, Ruiyun Yang . Some new Hardy-Hilbert-type inequalities with multiparameters. AIMS Mathematics, 2022, 7(1): 840-854. doi: 10.3934/math.2022050 |
[7] | Pengyan Wang, Jiahao Wang . Hardy type identities and inequalities with divergence type operators on smooth metric measure spaces. AIMS Mathematics, 2024, 9(6): 16354-16375. doi: 10.3934/math.2024792 |
[8] | Tianyang He, Zhiwen Liu, Ting Yu . The Weighted $ \boldsymbol{L}^{\boldsymbol{p}} $ estimates for the fractional Hardy operator and a class of integral operators on the Heisenberg group. AIMS Mathematics, 2025, 10(1): 858-883. doi: 10.3934/math.2025041 |
[9] | Bicheng Yang, Shanhe Wu, Qiang Chen . On an extended Hardy-Littlewood-Polya’s inequality. AIMS Mathematics, 2020, 5(2): 1550-1561. doi: 10.3934/math.2020106 |
[10] | Khaled Kefi, Mohammed M. Al-Shomrani . On multiple solutions for an elliptic problem involving Leray–Lions operator, Hardy potential and indefinite weight with mixed boundary conditions. AIMS Mathematics, 2025, 10(3): 5444-5455. doi: 10.3934/math.2025251 |
Opic and Kufiner [1] proved that if 1<r≤ϱ<∞, then
(∫bau(ϰ)(∫ϰah(τ)dτ)ϱdϰ)1ϱ≤C(∫bahr(ϰ)υ(ϰ)dϰ)1r, | (1.1) |
holds for the nonnegative function h, if
K:=supa<ϰ<b(∫bϰu(τ)dτ)1ϱ(∫ϰaυ1−ϖ(τ)dτ)1ϖ<∞, |
where −∞≤a≤b≤∞ and u,v are measurable positive functions in (a,b). Furthermore, an estimate for the constant C in (1.1) is given by
C≤(1+ϱϖ)1ϱ(1+ϖϱ)1ϖK, where ϖ=rr−1. |
Stepanov [2] proved that if 0<r≤1, r≤ϱ<∞ and k≥0 is a measurable kernel, then
(∫∞0u(ϰ)(∫∞0k(ϰ,η)h(η)dη)ϱdϰ)1ϱ≤C(∫∞0hr(ϰ)υ(ϰ)dϰ)1r, | (1.2) |
holds for the nonnegative nondecreasing function h, if
L=supτ>0(∫∞τυ(ϰ)dϰ)−1r(∫∞0u(ϰ)(∫∞τk(ϰ,η)dη)ϱdϰ)1ϱ<∞. |
Furthermore, if C in (1.2) is the smallest feasible, then L=C.
Heinig and Maligranda [3] demonstrated that if 0<r≤1, r≤ϱ<∞, and k≥0 is a measurable kernel, then
(∫∞0u(ϰ)(∫∞0k(ϰ,τ)h(τ)dτ)ϱdϰ)1ϱ≤C(∫∞0hr(ϰ)υ(ϰ)dϰ)1r, |
holds for the nonnegative nonincreasing function h, if
(∫∞0u(ϰ)(∫s0k(ϰ,τ)dτ)ϱdϰ)1ϱ≤C(∫s0υ(ϰ)dϰ)1r, |
holds for all s>0.
Oguntuase et al. [4] proved that if 1<r≤ϱ<∞, 0<bj≤∞, sj∈(1,r), j=1,2,...,m, ϕ is a nonnegative and convex function on (a,d), −∞≤a<d≤∞. Define u(ϰ1,...,ϰm) and v(ϰ1,...,ϰm) as nonnegative weighted functions such that v(ϰ1,...,ϰm)=v1(ϰ1)v2(ϰ2)...vm(ϰm), then
(∫b10...∫bm0[ϕ(Akh(ϰ1,...,ϰm))]ϱu(ϰ1,...,ϰm)dϰ1...dϰmϰ1...ϰm)1ϱ≤C(∫b10...∫bm0ϕr(h(ϰ1,...,ϰm))v(ϰ1,...,ϰm)dϰ1...dϰmϰ1...ϰm)1r, | (1.3) |
holds ∀h(ϰ1,...,ϰm) such that a<h(ϰ1,...,ϰm)<d, if
A(s1,...,sm)=sup0<η1,...,ηm<b1,...,bm[V1(η1)]s1−1r...[Vm(ηm)]sm−1r×(∫b1η1...∫bmηm(k(ϰ1,...,ϰm,η1,...,ηm)K(ϰ1,...,ϰm))ϱ[V1(ϰ1)]ϱ(r−s1)r×[Vm(ϰm)]ϱ(r−sm)ru(ϰ1,...,ϰm)ϰ1...ϰmdϰ1...dϰm)1ϱ<∞, |
holds, where Vj(ηj)=∫ηj0[vj(τj)]−1r−1(τj)1r−1dτj, j=1,2,....,m,
Akh(ϰ1,...,ϰm)=1K(ϰ1,...,ϰm)∫ϰ10...∫ϰm0k(ϰ1,...,ϰm,η1,...,ηm)h(η1,...,ηm)dη1...dηm, |
and
K(ϰ1,...,ϰm)=∫ϰ10...∫ϰm0k(ϰ1,...,ϰm,τ1,...,τm)dτ1...dτm. |
Furthermore, if C is the best feasible, then
C≤inf1<s1,...,sm<r(r−1r−s1)r−1r...(r−1r−sm)r−1rA(s1,...,sm). |
Oguntuase and Durojaye [5] showed that if 1<r≤ϱ<∞, 0<bj≤∞, sj∈(1,r), j=1,2,...,m and ϕ is a nonnegative function on (a,d), −∞≤a<d≤∞. Let there exist a convex function ψ on (a,d) such that
Aψ(ϰ)≤ϕ(ϰ)≤Bψ(ϰ), |
holds for constants 0<A≤B<∞ and u(ϰ1,...,ϰm), v(ϰ1,...,ϰm), which are nonnegative weighted functions such that v(ϰ1,...,ϰm)=v1(ϰ1)v2(ϰ2)...vm(ϰm). Then,
(∫b10...∫bm0[ϕ(Akh(ϰ1,...,ϰm))]ϱu(ϰ1,...,ϰm)ϰ1...ϰmdϰ1...dϰm)1ϱ≤C(∫b10...∫bm0ϕr(h(ϰ1,...,ϰm))v(ϰ1,...,ϰm)ϰ1...ϰmdϰ1...dϰm)1r, | (1.4) |
holds ∀h(ϰ1,...,ϰm) such that a<h(ϰ1,...,ϰm)<d if
A(s1,...,sm)=sup0<η1,...,ηm<b1,...,bm[V1(η1)]s1−1r...[Vm(ηm)]sm−1r×(∫b1η1...∫bmηm(k(ϰ1,...,ϰm,η1,...,ηm)K(ϰ1,...,ϰm))ϱ[V1(ϰ1)]ϱ(r−s1)r[Vm(ϰm)]ϱ(r−sm)r.u(ϰ1,...,ϰm)ϰ1...ϰmdϰ1...dϰm)1ϱ<∞, |
holds, where Vj(ηj)=∫ηj0[vj(τj)]−1r−1(τj)1r−1dτj, j=1,2,....,m,
Akh(ϰ1,...,ϰm)=1K(ϰ1,...,ϰm)∫ϰ10...∫ϰm0k(ϰ1,...,ϰm,η1,...,ηm)h(η1,...,ηm)dη1...dηm, |
and
K(ϰ1,...,ϰm)=∫ϰ10...∫ϰm0k(ϰ1,...,ϰm,τ1,...,τm)dτ1...dτm. |
In addition, if C is the best constant, then
C≤BAinf1<s1,...,sm<r(r−1r−s1)r−1r...(r−1r−sm)r−1rA(s1,...,sm). |
In recent years, the study of dynamic inequalities on time scales has received a lot of attention and has become a major field in pure and applied mathematics. The general idea is to prove a result for a dynamic inequality where the domain of the unknown function is a so-called time scale T, which may be an arbitrary closed subset of the real numbers R. The case is when the time scale is equal to the reals or to the integers representing the classical theories of continuous and of discrete inequalities. Any inequality that can be proven on time scales should be avoided twice, once in the continuous case and once in the discrete case.
Saker et al. [6] established the time scale version of (1.1) as the following: Let T be a time scale with a,b∈T, 1<r≤ϱ<∞, h∈Crd([a,b]T,R) be a nonnegative the function, and f,g∈Crd((a,b)T,R) be positive functions. Then,
(∫baf(ϰ)(∫σ(ϰ)ah(τ)Δτ)ϱΔϰ)1ϱ≤C(∫bahr(ϰ)g(ϰ)Δϰ)1r, | (1.5) |
holds, if
K=supa<ϰ<b(∫bϰf(τ)Δτ)1ϱ(∫σ(ϰ)ag1−ϖ(τ)Δτ)1ϖ<∞, where ϖ=rr−1. |
Furthermore, for the constant C in (1.5), the following estimate is satisfied:
K≤C≤(1+ϱϖ)1ϱ(1+ϖϱ)1ϖK. |
In the same paper [6], the authors proved the dual form for (1.5) in the following: Let T be a time scale with a,b∈T, 1<r≤ϱ<∞, h∈Crd([a,b]T,R) be a nonnegative the function, and f,g∈Crd((a,b)T,R) be positive functions. Then,
(∫baf(ϰ)(∫bxh(τ)Δτ)ϱΔϰ)1ϱ≤C(∫bahr(ϰ)g(ϰ)Δϰ)1r, | (1.6) |
holds, if
L=supa<ϰ<b(∫σ(ϰ)af(τ)Δτ)1ϱ(∫bxg1−ϖ(τ)Δτ)1ϖ<∞, where ϖ=rr−1. |
Furthermore, for the constant C in (1.6), the following estimate is satisfied:
L≤C≤(1+ϱϖ)1ϱ(1+ϖϱ)1ϖL. |
For more details about the dynamic inequalities of Hardy-type, we refer the reader to the papers [7,8,9,10,11] and the book by Agarwal et al. [12].
The aim of this paper is to demonstrate multidimensional Hardy-type inequalities with general kernels on time scales. As special cases of our results on time scales, when T=R, we get the integral inequalities (1.3) and (1.4) proved by Oguntuase et al. [4] and Oguntuase and Durojaye [5], respectively. Also, as special cases of the main reslts, when T=N, we can obtain other inequalities in the discrete calculus, which are essentially new for the reader.
The following is the structure of this document. Section 2 covers the fundamentals of time scales calculus. In Section 3, we prove our main results, where some classical and modern inequalities are derived.
This section includes definitions and lemmas which are fundamentals of time scales calculus; see [13,14,15]. Consider the time scale T and τ∈T. The forward jump operator is defined by: σ(τ)=inf{v∈T:v>τ}. A function Φ:T→R, is characterized as rd-continuous when it exhibits continuity at every right-dense point within T and possesses finite left-sided limits at left-dense points in T. The set of all such rd-continuous functions is ushered by Crd(T,R), and for any function Φ:T→R, the notation Φσ(τ) denotes Φ(σ(τ)).
The derivatives of Φϖ and Φ/ϖ (where ϖϖσ≠0) of two differentiable functions Φ and ϖ are given by
(Φϖ)Δ=ΦΔϖ+ΦσϖΔ=ΦϖΔ+ΦΔϖσ, (Φϖ)Δ=ΦΔϖ−ΦϖΔϖϖσ. |
If GΔ(r)=ϖ(r), then the delta integral is predefined as
∫rr0ϖ(t)Δt=G(r)−G(r0). |
It can be demonstrated that if ϖ∈Crd(T,R), then the Cauchy integral G(r)=∫rr0ϖ(t)Δt exists, r0∈T, and it satisfies GΔ(r)=ϖ(r). The integration by parts formula is provided by
∫υυ0λ(τ)φΔ(τ)Δτ=[λ(τ)φ(τ)]υυ0−∫υυ0λΔ(τ)φσ(τ)Δτ. |
The time scale chain rule is stated as follows:
(φ∘g)Δ(τ)=φ′(g(ϰ))gΔ(τ), where ϰ∈[τ,σ(τ)], | (2.1) |
where it is supposed that φ:R→R is continuously differentiable and g:T→R is delta differentiable.
The Hölder inequality is expressed as:
∫b1a1...∫bmam|h(τ)g(τ)|Δτ1...Δτm≤(∫b1a1...∫bmam|h(τ)|γΔτ1...Δτm)1γ(∫b1a1...∫bmam|g(τ)|νΔτ1...Δτm)1ν, | (2.2) |
where a1,...,am,b1,...,bm∈T, h,g:Tm→R such that
h(τ)=h(τ1,τ2,...,τm), g(τ)=g(τ1,τ2,...,τm), |
γ>1 and 1/γ+1/ν=1.
Theorem 2.1. (Jensen's inequality) Assume that aj,bj∈T, j=1,2,..,m, and c,d∈R. If g:Tm→(c,d) is rd-continuous and Φ:(c,d)→R is continuous and convex, then
Φ(1∫b1a1...∫bmamh(ξ,τ)Δτ∫b1a1...∫bmamh(ξ,τ)g(τ)Δτ)≤1∫b1a1...∫bmamh(ξ,τ)Δτ∫b1a1...∫bmamh(ξ,τ)Φ(g(τ))Δτ, | (2.3) |
where
Δτ=Δτ1...Δτm, h(ξ,τ)=h(ξ1,...,ξm,τ1,...,τm)andg(τ)=g(τ1,...,τm). |
Theorem 2.2. (Minkowski's inequality) Assume that aj,bj∈T, j=1,2,...,m, and γ≥1 . If k:Tm×Tm→R, w,h:Tm→R are nonnegative rd-continuous functions, then
(∫b1a1...∫bmamw(ξ)(∫b1a1...∫bmamh(τ)k(ξ,τ)Δτ)γΔξ)1γ≤∫b1a1...∫bmamh(τ)(∫b1a1...∫bmamw(ξ)kγ(ξ,τ)Δξ)1γΔτ, | (2.4) |
where
k(ξ,τ)=k(ξ1,...,ξm,τ1,...,τm),w(ξ)=w(ξ1,...,ξm)andh(τ)=h(τ1,...,τm). |
We shall assume in this work that the functions are nonnegative rd-continuous functions and the considered integrals exist (and are finite, i.e., convergent). Throughout, we are using the following assumption: Define the nonnegative functions h:Tm→R, k:Tm×Tm→R as the following:
h(η)=h(η1,...,ηm) and k(ξ,η)=k(ξ1,...,ξm,η1,...,ηm). |
Also, we define the general Hardy operator Ak as the following:
Akh(ξ1,...,ξm)=1K(ξ1,...,ξm)∫σ(ξ1)a1...∫σ(ξm)amk(ξ1,...,ξm,η1,...,ηm)h(η1,...,ηm)Δη, |
with
K(ξ1,...,ξm)=∫σ(ξ1)a1...∫σ(ξm)amk(ξ1,...,ξm,τ1,...,τm)Δτ, |
and
A(s1,...,sm)=supaj<ηj<bj(∫b1η1...∫bmηm(k(ξ,η)K(ξ))ϱ[Vσ1(ξ1)]ϱ(μ−s1)μ...[Vσm(ξm)]ϱ(μ−sm)μ×u(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ)1ϱ[Vσ1(η1)]s1−1μ...[Vσm(ηm)]sm−1μ, | (3.1) |
where Vj(ηj)=∫ηjaj[vj(τj)]−1μ−1(σ(τj)−aj)1μ−1Δτj, j=1,2,....,m.
Mathematical applications of this work are given in the form of remarks, examples, and corollaries. Now, we start with the time scale version of (1.3).
Theorem 3.1. Let aj,bj∈T, 1<μ≤ϱ<∞, sj∈(1,μ), j=1,2,...,m, and ψ be a nonnegative and convex function on (a,d), −∞≤a<d≤∞. We define u(ξ1,...,ξm) and v(ξ1,...,ξm) as nonnegative weighted functions such that
v(ξ1,...,ξm)=v1(ξ1)v2(ξ2)...vm(ξm). | (3.2) |
If (3.1) holds, then
(∫b1a1...∫bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ)1ϱ≤(μ−1μ−s1)μ−1μ...(μ−1μ−sm)μ−1μA(s1,...,sm)×(∫b1a1...∫bmamψμ(h(η))v(η)(σ(η1)−a1)...(σ(ηm)−am)Δη)1μ. | (3.3) |
Proof. By applying (2.3), we see that
∫b1a1...∫bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ=∫b1a1...∫bmam(ψ(1K(ξ)∫σ(ξ1)a1...∫σ(ξm)amk(ξ,η)h(η)Δη))ϱ×u(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ≤∫b1a1...∫bmam(1K(ξ)∫σ(ξ1)a1...∫σ(ξm)amk(ξ,η)ψ(h(η))Δη)ϱ×u(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ=∫b1a1...∫bmamu(ξ)Kϱ(ξ)Jϱ(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ, | (3.4) |
where
J(ξ)=∫σ(ξ1)a1...∫σ(ξm)amk(ξ,η)ψ(h(η))Δη. | (3.5) |
Denote ψμ(h(η))v1(η1)...vm(ηm)(σ(η1)−a1)...(σ(ηm)−am)=Ψ(η) and substitute it into (3.5) to obtain that
J(ξ)=∫σ(ξ1)a1...∫σ(ξm)amk(ξ,η)[Ψ(η)]1μ[v1(η1)]−1μ...[vm(ηm)]−1μ×[Vσ1(η1)]s1−1μ...[Vσm(ηm)]sm−1μ[Vσ1(η1)]1−s1μ...[Vσm(ηm)]1−smμ×(σ(η1)−a1)1μ...(σ(ηm)−am)1μΔη, | (3.6) |
where Vj(ηj)=∫ηjaj[vj(τj)]−1μ−1(σ(τj)−aj)1μ−1Δτj, j=1,2,...,m. Applying ( 2.2) with μ>1 and μ/(μ−1) in (3.6), we see that
J(ξ)≤(∫σ(ξ1)a1...∫σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s1−1...[Vσm(ηm)]sm−1Δη)1μ×[∫σ(ξ1)a1...∫σ(ξm)am[Vσ1(η1)]1−s1μ−1...[Vσm(ηm)]1−smμ−1×[v1(η1)]−1μ−1...[vm(ηm)]−1μ−1(σ(η1)−a1)1μ−1...(σ(ηm)−am)1μ−1Δη]μ−1μ. | (3.7) |
Substituting (3.7) into (3.4), we have
∫b1a1...∫bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ≤∫b1a1...∫bmamu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Kϱ(ξ)×(∫σ(ξ1)a1...∫σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s1−1...[Vσm(ηm)]sm−1Δη)ϱμ×[∫σ(ξ1)a1...∫σ(ξm)am[Vσ1(η1)]1−s1μ−1...[Vσm(ηm)]1−smμ−1×[v1(η1)]−1μ−1...[vm(ηm)]−1μ−1(σ(η1)−a1)1μ−1...(σ(ηm)−am)1μ−1Δη]ϱ(μ−1)μΔξ. | (3.8) |
Since
Vj(ηj)=∫ηjaj[vj(τj)]−1μ−1(σ(τj)−aj)1μ−1Δτj, j=1,2,...,m, |
then
VΔj(ηj)=[vj(ηj)]−1μ−1(σ(ηj)−aj)1μ−1>0. | (3.9) |
Therefore, the function Vj is increasing. Applying the chain rule formula (2.1) on [Vj(ηj)]1−(sj−1/(μ−1)), we obtain
[[Vj(ηj)]1−sj−1μ−1]Δ=[[Vj(ηj)]μ−sjμ−1]Δ=(μ−sjμ−1)[Vj(ξj)]−(sj−1)μ−1VΔj(ηj), | (3.10) |
where ξj∈[ηj,σ(ηj)], j=1,2,...,m. Thus, by substituting (3.9) into (3.10), we see
[[Vj(ηj)]μ−sjμ−1]Δ=(μ−sjμ−1)[Vj(ξj)]−(sj−1)μ−1[vj(ηj)]−1μ−1(σ(ηj)−aj)1μ−1. | (3.11) |
Since ξj≤σ(ηj) and Vj is increasing, we have
Vj(ξj)≤Vσj(ηj). |
Using the relation 1<sj<μ, j=1,2,...,m, we get
[Vj(ξj)]−(sj−1)μ−1≥[Vσj(ηj)]−(sj−1)μ−1. | (3.12) |
Substituting (3.12) into (3.11), we have
[[Vj(ηj)]μ−sjμ−1]Δ≥(μ−sjμ−1)[Vσj(ηj)]−(sj−1)μ−1[vj(ηj)]−1μ−1(σ(ηj)−aj)1μ−1, |
and then
∫σ(ξj)aj[[Vj(ηj)]μ−sjμ−1]ΔΔηj≥(μ−sjμ−1)∫σ(ξj)aj[Vσj(ηj)]−(sj−1)μ−1[vj(ηj)]−1μ−1(σ(ηj)−aj)1μ−1Δηj. |
Thus, we have (note Vj(aj)=0) that
∫σ(ξj)aj[Vσj(ηj)]−(sj−1)μ−1[vj(ηj)]−1μ−1(σ(ηj)−aj)1μ−1Δηj≤(μ−1μ−sj)∫σ(ξj)aj[[Vj(ηj)]μ−sjμ−1]ΔΔηj=(μ−1μ−sj)[Vσj(ξj)]μ−sjμ−1, j=1,2,...,m, | (3.13) |
and then we have from (3.13) that
∫σ(ξ1)a1...∫σ(ξm)am[Vσ1(η1)]1−s1μ−1...[Vσm(ηm)]1−smμ−1×[v1(η1)]−1μ−1...[vm(ηm)]−1μ−1(σ(η1)−a1)1μ−1...(σ(ηm)−am)1μ−1Δη=(∫σ(ξ1)a1[Vσ1(η1)]−(s1−1)μ−1[v1(η1)]−1μ−1(σ(η1)−a1)1μ−1Δη1)×....×(∫σ(ξm)am[Vσm(ηm)]−(sm−1)μ−1[vm(ηm)]−1μ−1(σ(ηm)−am)1μ−1Δηm)≤(μ−1μ−s1)...(μ−1μ−sm)[Vσ1(ξ1)]μ−s1μ−1...[Vσm(ξm)]μ−smμ−1. |
Substituting into (3.8), we see that
∫b1a1...∫bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ≤(μ−1μ−s1)ϱ(μ−1)μ...(μ−1μ−sm)ϱ(μ−1)μ∫b1a1...∫bmam[Vσ1(ξ1)]ϱ(μ−s1)μ...[Vσm(ξm)]ϱ(μ−sm)μ×(∫σ(ξ1)a1...∫σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s1−1...[Vσm(ηm)]sm−1Δη)ϱμ×u(ξ)Kϱ(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ. | (3.14) |
Applying (2.4) on the term
∫b1a1...∫bmam(∫σ(ξ1)a1...∫σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s1−1...[Vσm(ηm)]sm−1Δη)ϱμ×[Vσ1(ξ1)]ϱ(μ−s1)μ...[Vσm(ξm)]ϱ(μ−sm)μu(ξ)Kϱ(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ, |
with ϱ/μ>1, we observe that
[∫b1a1...∫bmam(∫σ(ξ1)a1...∫σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s1−1...[Vσm(ηm)]sm−1Δη)ϱμ×[Vσ1(ξ1)]ϱ(μ−s1)μ...[Vσm(ξm)]ϱ(μ−sm)μu(ξ)Kϱ(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ]μϱ≤∫b1a1...∫bmamΨ(η)[Vσ1(η1)]s1−1...[Vσm(ηm)]sm−1×[∫b1η1...∫bmηmkϱ(ξ,η)[Vσ1(ξ1)]ϱ(μ−s1)μ...[Vσm(ξm)]ϱ(μ−sm)μ×u(ξ)Kϱ(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ]μϱΔη. | (3.15) |
Substituting (3.15) into (3.14), we obtain
∫b1a1...∫bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ≤(μ−1μ−s1)ϱ(μ−1)μ...(μ−1μ−sm)ϱ(μ−1)μ[∫b1a1...∫bmamΨ(η)[Vσ1(η1)]s1−1...[Vσm(ηm)]sm−1×(∫b1η1...∫bmηmkϱ(ξ,η)[Vσ1(ξ1)]ϱ(μ−s1)μ...[Vσm(ξm)]ϱ(μ−sm)μ×u(ξ)Kϱ(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ)μϱΔη]ϱμ. | (3.16) |
Using the assumptions (3.1) and (3.2), the inequality (3.16 ) becomes
∫b1a1...∫bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ≤Aϱ(s1,...,sm)(μ−1μ−s1)ϱ(μ−1)μ...(μ−1μ−sm)ϱ(μ−1)μ[∫b1a1...∫bmamΨ(η)Δη]ϱμ=(μ−1μ−s1)ϱ(μ−1)μ...(μ−1μ−sm)ϱ(μ−1)μAϱ(s1,...,sm)×[∫b1a1...∫bmamψμ(h(η))v1(η1)...vm(ηm)(σ(η1)−a1)...(σ(ηm)−am)Δη]ϱμ=(μ−1μ−s1)ϱ(μ−1)μ...(μ−1μ−sm)ϱ(μ−1)μAϱ(s1,...,sm)×[∫b1a1...∫bmamψμ(h(η))v(η1,..,ηm)(σ(η1)−a1)...(σ(ηm)−am)Δη]ϱμ, | (3.17) |
and then
(∫b1a1...∫bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ)1ϱ≤(μ−1μ−s1)μ−1μ...(μ−1μ−sm)μ−1μA(s1,...,sm)×[∫b1a1...∫bmamψμ(h(η))v(η1,..,ηm)(σ(η1)−a1)...(σ(ηm)−am)Δη]1μ, |
which is (3.3).
Remark 3.2. If T=R, then (3.3) gives the inequality (1.3) proved by Oguntuase, Persson, and Essel [4].
Corollary 3.3. In Theorem 3.1, let T=Z, aj,bj∈Z, 1<μ≤ϱ<∞, sj∈(1,μ), j=1,2,...,m, and ψ be a nonnegative and convex sequence on (a,d), −∞≤a<d≤∞. Define u(ξ1,...,ξm) and v(ξ1,...,ξm) as nonnegative weighted sequences such that
v(ξ1,...,ξm)=v1(ξ1)v2(ξ2)...vm(ξm). |
Then
(b1−1∑ξ1=a1...bm−1∑ξm=am[ψ(Akh(ξ))]ϱu(ξ)(ξ1+1−a1)...(ξm+1−am))1ϱ≤(μ−1μ−s1)μ−1μ...(μ−1μ−sm)μ−1μA(s1,...,sm)×(b1−1∑η1=a1...bm−1∑ηm=amψμ(h(η))v(η)(η1+1−a1)...(ηm+1−am))1μ, |
provided that
A(s1,...,sm)=supaj<ηj<bj(b1−1∑ξ1=η1...bm−1∑ξm=ηm(k(ξ,η)K(ξ))ϱ[V1(ξ1+1)]ϱ(μ−s1)μ...[Vm(ξm+1)]ϱ(μ−sm)μ×u(ξ)(ξ1+1−a1)...(ξm+1−am))1ϱ[V1(η1+1)]s1−1μ...[Vm(ηm+1)]sm−1μ<∞, |
where
Akh(ξ1,...,ξm)=1K(ξ1,...,ξm)ξ1∑η1=a1...ξm∑ηm=amk(ξ1,...,ξm,η1,...,ηm)h(η1,...,ηm), |
K(ξ1,...,ξm)=ξ1∑τ1=a1...ξm∑τm=amk(ξ1,...,ξm,τ1,...,τm), |
and
Vj(ηj)=∑ηj−1τj=aj[vj(τj)]−1μ−1(τj+1−aj)1μ−1, j=1,2,....,m. |
Example 3.4. If we put m=1, k(ξ,η)=1, ψ(x)=x, f(ξ)=u(ξ)(σ(ξ)−a)ϱ+1, and g(η)=v(η)(σ(η)−a)μ+1, in Theorem 3.1, then we get the inequality (1.5) proved by Saker et al. [6].
Theorem 3.5. Let aj,bj∈T, 1<μ≤ϱ<∞, sj∈(1,μ), j=1,2,...,m, and ϕ be a nonnegative function on (a,d), −∞≤a<d≤∞such that
Aψ(ξ)≤ϕ(ξ)≤Bψ(ξ), | (3.18) |
holds for constants 0<A≤B<∞, and ψ is a nonnegative and convex function. We define u(ξ1,...,ξm) and v(ξ1,...,ξm) as nonnegative weighted functions such that
v(ξ1,...,ξm)=v1(ξ1)v2(ξ2)...vm(ξm). | (3.19) |
If (3.1) holds, then
(∫b1a1...∫bmam[ϕ(Akh(ξ))]ϱu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ)1ϱ≤BA(μ−1μ−s1)μ−1μ...(μ−1μ−sm)μ−1μA(s1,...,sm)×(∫b1a1...∫bmamϕμ(h(η))v(η1,...,ηm)(σ(η1)−a1)...(σ(ηm)−am)Δη)1μ. | (3.20) |
Proof. From (3.18) and by applying (2.3), we see that
∫b1a1...∫bmam[ϕ(Akh(ξ))]ϱu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ≤Bϱ∫b1a1...∫bmam[ψ(Akh(ξ))]ϱu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ=Bϱ∫b1a1...∫bmam[ψ(1K(ξ)∫σ(ξ1)a1...∫σ(ξm)amk(ξ,η)h(η)Δη)]ϱ×u(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ≤Bϱ∫b1a1...∫bmam(1K(ξ)∫σ(ξ1)a1...∫σ(ξm)amk(ξ,η)ψ(h(η))Δη)ϱ×u(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Δξ=Bϱ∫b1a1...∫bmamu(ξ)Kϱ(ξ)Jϱ(ξ)Δξ(σ(ξ1)−a1)...(σ(ξm)−am), | (3.21) |
where
J(ξ)=∫σ(ξ1)a1...∫σ(ξm)amk(ξ,η)ψ(h(η))Δη. | (3.22) |
Denote ψμ(h(η))v1(η1)..vm(ηm)(σ(η1)−a1)..(σ(ηm)−am)=Ψ(η) and substitute it into (3.22) to obtain that
J(ξ)=∫σ(ξ1)a1...∫σ(ξm)amk(ξ,η)[Ψ(η)]1μ[v1(η1)]−1μ...[vm(ηm)]−1μ×(σ(η1)−a1)1μ...(σ(ηm)−am)1μΔη=∫σ(ξ1)a1...∫σ(ξm)amk(ξ,η)[Ψ(η)]1μ[Vσ1(η1)]s1−1μ...[Vσm(ηm)]sm−1μ×[Vσ1(η1)]1−s1μ...[Vσm(ηm)]1−smμ[v1(η1)]−1μ...[vm(ηm)]−1μ×(σ(η1)−a1)1μ...(σ(ηm)−am)1μΔη, | (3.23) |
where Vj(ηj)=∫ηjaj[vj(τj)]−1μ−1(σ(τj)−aj)1μ−1Δτj, j=1,2,....,m. Applying (2.2) with μ>1 and μ/(μ−1) on (3.23), we see that
J(ξ)≤(∫σ(ξ1)a1...∫σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s1−1...[Vσm(ηm)]sm−1Δη)1μ×[∫σ(ξ1)a1...∫σ(ξm)am[Vσ1(η1)]1−s1μ−1...[Vσm(ηm)]1−smμ−1×[v1(η1)]−1μ−1...[vm(ηm)]−1μ−1(σ(η1)−a1)1μ−1...(σ(ηm)−am)1μ−1Δη]μ−1μ. | (3.24) |
Substituting (3.24) into (3.21), we have
∫b1a1...∫bmam[ϕ(Akh(ξ))]ϱu(ξ)(σ(ϰ1)−a1)...(σ(ϰm)−am)Δξ≤Bϱ∫b1a1...∫bmamu(ξ)(σ(ξ1)−a1)...(σ(ξm)−am)Kϱ(ξ)×(∫σ(ξ1)a1...∫σ(ξm)amkμ(ξ,η)Ψ(η)[Vσ1(η1)]s1−1...[Vσm(ηm)]sm−1Δη)ϱμ×[∫σ(ξ1)a1...∫σ(ξm)am[Vσ1(η1)]1−s1μ−1...[Vσm(ηm)]1−smμ−1×[v1(η1)]−1μ−1...[vm(ηm)]−1μ−1(σ(η1)−a1)1μ−1...(σ(ηm)−am)1μ−1Δη]ϱ(μ−1)μΔξ. | (3.25) |
Since
Vj(ηj)=∫ηjaj[vj(τj)]−1μ−1(σ(τj)−aj)1μ−1Δτj, j=1,2,...,m, |
then
VΔj(ηj)=[vj(ηj)]−1μ−1(σ(ηj)−aj)1μ−1>0. | (3.26) |
Therefore, the function Vj is increasing. Applying the chain rule formula (2.1) on [Vj(ηj)]1−(sj−1/(μ−1)), we obtain
[[Vj(ηj)]1−(sj−1)μ−1]Δ=[[Vj(ηj)]μ−sjμ−1]Δ=(μ−sjμ−1)[Vj(ξj)]−(sj−1)μ−1VΔj(ηj), | (3.27) |
where ξj∈[ηj,σ(ηj)], j=1,2,...,m. Thus, by substituting (3.26) into (3.27), we see that
[[Vj(ηj)]μ−sjμ−1]Δ=(μ−sjμ−1)[Vj(ξj)]−(sj−1)μ−1[vj(ηj)]−1μ−1(σ(ηj)−aj)1μ−1. | (3.28) |
Since ξj≤σ(ηj) and Vj is increasing, we have
Vj(ξj)≤Vσj(ηj). |
Using the relation 1<sj<μ, j=1,2,..,m, we see that
[Vj(ξj)]−(sj−1)μ−1≥[Vσj(ηj)]−(sj−1)μ−1. | (3.29) |
Substituting (3.29) into (3.28), we have
[[Vj(ηj)]μ−sjμ−1]Δ≥(μ−sjμ−1)[Vσj(ηj)]−(sj−1)μ−1[vj(ηj)]−1μ−1(σ(ηj)−aj)1μ−1, |
and then
∫σ(ξj)aj[[Vj(ηj)]μ−sjμ−1]ΔΔηj≥(μ−sjμ−1)∫σ(ξj)aj[Vσj(ηj)]−(sj−1)μ−1[vj(ηj)]−1μ−1(σ(ηj)−aj)1μ−1Δηj. |
Thus, we have (note Vj(aj)=0) that
∫σ(ξj)aj[Vσj(ηj)]−(sj−1)μ−1[vj(ηj)]−1μ−1(σ(ηj)−aj)1μ−1Δηj≤(μ−1μ−sj)∫σ(ξj)aj[[Vj(ηj)]μ−sjμ−1]ΔΔηj=(μ−1μ−sj)[Vσj(ξj)]μ−sjμ−1, j=1,2,...,m, | (3.30) |
and then we have from (3.30) that
\begin{eqnarray*} &&\int_{a_{1}}^{\sigma (\xi _{1})}...\int_{a_{m}}^{\sigma (\xi _{m})}\left[ V_{1}^{\sigma }(\eta _{1})\right] ^{\frac{1-s_{1}}{\mu -1}}...\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{\frac{1-s_{m}}{\mu -1}} \\ &&\times \left[ v_{1}(\eta _{1})\right] ^{\frac{-1}{\mu -1}}...\left[ v_{m}(\eta _{m})\right] ^{\frac{-1}{\mu -1}}\left( \sigma \left( \eta _{1}\right) -a_{1}\right) ^{\frac{1}{\mu -1}}...\left( \sigma \left( \eta _{m}\right) -a_{m}\right) ^{\frac{1}{\mu -1}}\Delta \mathbf{\eta } \\ &=&\left( \int_{a_{1}}^{\sigma (\xi _{1})}\left[ V_{1}^{\sigma }(\eta _{1}) \right] ^{-\frac{(s_{1}-1)}{\mu -1}}\left[ v_{1}(\eta _{1})\right] ^{\frac{-1 }{\mu -1}}\left( \sigma \left( \eta _{1}\right) -a_{1}\right) ^{\frac{1}{\mu -1}}\Delta \eta _{1}\right) \\ &&\times ...\times \left( \int_{a_{m}}^{\sigma (\xi _{m})}\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{-\frac{(s_{m}-1)}{\mu -1}}\left[ v_{m}(\eta _{m})\right] ^{\frac{-1}{\mu -1}}\left( \sigma \left( \eta _{m}\right) -a_{m}\right) ^{\frac{1}{\mu -1}}\Delta \eta _{m}\right) \\ &\leq &\left( \frac{\mu -1}{\mu -s_{1}}\right) ...\left( \frac{\mu -1}{\mu -s_{m}}\right) \left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\mu -s_{1}}{ \mu -1}}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{\mu -s_{m}}{\mu -1 }}. \end{eqnarray*} |
Substituting into (3.25), we see
\begin{eqnarray} &&\int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \phi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{\xi })}{ \left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi } \\ &\leq &B^{\varrho }\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\varrho (\mu -1)}{\mu }} \\ &&\times \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left( \int_{a_{1}}^{\sigma (\xi _{1})}...\int_{a_{m}}^{\sigma (\xi _{m})}k^{\mu }( \mathbf{\xi , \eta })\Psi (\mathbf{\eta })\left[ V_{1}^{\sigma }(\eta _{1}) \right] ^{s_{1}-1}...\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{s_{m}-1}\Delta \mathbf{\eta }\right) ^{\frac{\varrho }{\mu }} \\ &&\times \left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\varrho \left( \mu -s_{1}\right) }{\mu }}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{ \varrho \left( \mu -s_{m}\right) }{\mu }}\frac{u(\mathbf{\xi })}{K^{\varrho }(\mathbf{\xi })\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }. \end{eqnarray} | (3.31) |
Applying (2.4) on the term
\begin{eqnarray*} &&\int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left( \int_{a_{1}}^{\sigma (\xi _{1})}...\int_{a_{m}}^{\sigma (\xi _{m})}k^{\mu }(\mathbf{\xi , \eta } )\Psi (\mathbf{\eta })\left[ V_{1}^{\sigma }(\eta _{1})\right] ^{s_{1}-1}... \left[ V_{m}^{\sigma }(\eta _{m})\right] ^{s_{m}-1}\Delta \mathbf{\eta } \right) ^{\frac{\varrho }{\mu }} \\ &&\times \left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\varrho \left( \mu -s_{1}\right) }{\mu }}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{ \varrho \left( \mu -s_{m}\right) }{\mu }}\frac{u(\mathbf{\xi })}{K^{\varrho }(\mathbf{\xi })\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }, \end{eqnarray*} |
with \varrho /\mu >1, we observe
\begin{eqnarray} &&\left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left( \int_{a_{1}}^{\sigma (\xi _{1})}...\int_{a_{m}}^{\sigma (\xi _{m})}k^{\mu }( \mathbf{\xi , \eta })\Psi (\mathbf{\eta })\left[ V_{1}^{\sigma }(\eta _{1}) \right] ^{s_{1}-1}...\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{s_{m}-1}\Delta \mathbf{\eta }\right) ^{\frac{\varrho }{\mu }}\right. \\ &&\left. \times \left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\varrho \left( \mu -s_{1}\right) }{\mu }}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{\varrho \left( \mu -s_{m}\right) }{\mu }}\frac{u(\mathbf{\xi })}{ K^{\varrho }(\mathbf{\xi })\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }\right] ^{\frac{\mu }{ \varrho }} \\ &\leq &\int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\Psi (\mathbf{\eta })\left[ V_{1}^{\sigma }(\eta _{1})\right] ^{s_{1}-1}...\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{s_{m}-1} \\ &&\times \left[ \int_{\eta _{1}}^{b_{1}}...\int_{\eta _{m}}^{b_{m}}k^{\varrho }(\mathbf{\xi , \eta })\left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\varrho \left( \mu -s_{1}\right) }{\mu }}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{\varrho \left( \mu -s_{m}\right) }{ \mu }}\right. \\ &&\times \left. \frac{u(\mathbf{\xi })}{K^{\varrho }(\mathbf{\xi })\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) } \Delta \mathbf{\xi }\right] ^{\frac{\mu }{\varrho }}\Delta \mathbf{\eta }. \end{eqnarray} | (3.32) |
Substituting (3.32) into (3.31), we obtain
\begin{align} & \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \phi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{\xi })}{ \left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi } \\ & \leq B^{\varrho }\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}\left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\Psi ( \mathbf{\eta })\left[ V_{1}^{\sigma }(\eta _{1})\right] ^{s_{1}-1}...\left[ V_{m}^{\sigma }(\eta _{m})\right] ^{s_{m}-1}\right. \\ & \times \left( \int_{\eta _{1}}^{b_{1}}...\int_{\eta _{m}}^{b_{m}}k^{\varrho }(\mathbf{\xi , \eta })\left[ V_{1}^{\sigma }(\xi _{1})\right] ^{\frac{\varrho \left( \mu -s_{1}\right) }{\mu }}...\left[ V_{m}^{\sigma }(\xi _{m})\right] ^{\frac{\varrho \left( \mu -s_{m}\right) }{ \mu }}\right. \\ & \times \left. \left. \frac{u(\mathbf{\xi })}{K^{\varrho }(\mathbf{\xi } )\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }\right) ^{\frac{\mu }{\varrho } }\Delta \mathbf{\eta }\right] ^{\frac{\varrho }{\mu }}. \end{align} | (3.33) |
Using the assumptions (3.1), (3.18), and (3.19), the inequality (3.33) becomes
\begin{eqnarray} &&\int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \phi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{\xi })}{ \left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi } \\ &\leq &B^{\varrho }A^{\varrho }(s_{1}, ..., s_{m})\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}\left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\Psi (\mathbf{\eta })\Delta \mathbf{\eta }\right] ^{\frac{\varrho }{\mu }} \\ &=&B^{\varrho }\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}A^{\varrho }(s_{1}, ..., s_{m}) \\ &&\times \left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\psi ^{\mu }(h( \mathbf{\eta }))\frac{v_{1}(\eta _{1})...v_{m}(\eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{\eta }\right] ^{\frac{\varrho }{\mu }} \\ &\leq &\frac{B^{\varrho }}{A^{\varrho }}\left( \frac{\mu -1}{\mu -s_{1}} \right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}} \right) ^{\frac{\varrho (\mu -1)}{\mu }}A^{\varrho }(s_{1}, ..., s_{m}) \\ &&\times \left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\phi ^{\mu }(h( \mathbf{\eta }))\frac{v_{1}(\eta _{1})...v_{m}(\eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{\eta }\right] ^{\frac{\varrho }{\mu }} \\ &=&\frac{B^{\varrho }}{A^{\varrho }}\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\varrho (\mu -1)}{\mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{ \frac{\varrho (\mu -1)}{\mu }}A^{\varrho }(s_{1}, ..., s_{m}) \\ &&\times \left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\phi ^{\mu }(h( \mathbf{\eta }))\frac{v(\eta _{1}, .., \eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{ \eta }\right] ^{\frac{\varrho }{\mu }}, \end{eqnarray} | (3.34) |
and then
\begin{eqnarray*} &&\left( \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \phi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{ \xi })}{\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }\right) ^{\frac{1}{\varrho }} \\ &\leq &\frac{B}{A}\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\mu -1}{ \mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\mu -1}{\mu } }A(s_{1}, ..., s_{m}) \\ &&\times \left[ \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\phi ^{\mu }(h( \mathbf{\eta }))\frac{v(\eta _{1}, .., \eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{ \eta }\right] ^{\frac{1}{\mu }}, \end{eqnarray*} |
which is (3.20).
Remark 3.6. If \mathbb{T=R} , then (3.20) gives the inequality (1.4) proved by Oguntuase and Durojaye [5].
Remark 3.7. If A=B=1 in Theorem 3.5, then we get Theorem 3.1.
Remark 3.8. It is obvious that we can use another technique to prove the inequality (3.20) in Theorem 3.5 by using Theorem 3.1 with (3.1) and (3.18) as follows:
\begin{eqnarray*} &&\left( \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \phi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{ \xi })}{\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }\right) ^{\frac{1}{\varrho }} \\ &\leq &B\left( \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\left[ \psi \left( A_{k}h\left( \mathbf{\xi }\right) \right) \right] ^{\varrho }\frac{u(\mathbf{ \xi })}{\left( \sigma (\xi _{1})-a_{1}\right) ...\left( \sigma (\xi _{m})-a_{m}\right) }\Delta \mathbf{\xi }\right) ^{\frac{1}{\varrho }} \\ &\leq &B\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\mu -1}{\mu } }...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\mu -1}{\mu } }A(s_{1}, ..., s_{m}) \\ &&\times \left( \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\psi ^{\mu }(h( \mathbf{\eta }))\frac{v(\eta _{1}, ..., \eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{ \eta }\right) ^{\frac{1}{\mu }} \\ &\leq &\frac{B}{A}\left( \frac{\mu -1}{\mu -s_{1}}\right) ^{\frac{\mu -1}{ \mu }}...\left( \frac{\mu -1}{\mu -s_{m}}\right) ^{\frac{\mu -1}{\mu } }A(s_{1}, ..., s_{m}) \\ &&\times \left( \int_{a_{1}}^{b_{1}}...\int_{a_{m}}^{b_{m}}\phi ^{\mu }(h( \mathbf{\eta }))\frac{v(\eta _{1}, ..., \eta _{m})}{\left( \sigma (\eta _{1})-a_{1}\right) ...\left( \sigma (\eta _{m})-a_{m}\right) }\Delta \mathbf{ \eta }\right) ^{\frac{1}{\mu }}. \end{eqnarray*} |
In this work, new multidimensional Hardy-type inequalities with general kernels have been developed in the context of time scales, a mathematical theory that unifies continuous and discrete analysis. These inequalities were proven using the n-dimensional time scale versions of Holder's inequality, Jensen’s inequality, and Minkowski’s inequality. Special cases were derived for \mathbb{T}=\mathbb{N} , which are essentially novel contributions to the field. These results extend the applicability of Hardy-type inequalities, providing new insights and tools that bridge discrete and continuous mathematical analysis.
Ghada AlNemer: Writing-review editing and Funding; M. Zakarya: Writing-review editing and Funding; H. M. Rezk: Investigation, Software, Supervision, Writing-original draft; A. I. Saied: Investigation, Software, Supervision, Writing-original draft. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through large Research Project under grant number RGP 2/190/45. Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R45), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
The authors declare that there are no conflict of interest in this paper.
[1] | B. Opic, A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics, 219, Harlow: Longman Scientific and Technical; New York: John Wiley and Sons, 1990. |
[2] |
V. D. Stepanov, Boundedness of linear integral operators on a class of monotone functions, Sib. Math. J., 32 (1992), 540–542. https://doi.org/10.1007/bf00970496 doi: 10.1007/bf00970496
![]() |
[3] | H. Heinig, L. Maligranda, Weighted inequalities for monotone and concave functions, Stud. Math., 116 (1995), 133–165. http://eudml.org/doc/216224 |
[4] |
J. A. Oguntuase, L. E. Persson, E. K. Essel, Multidimensional Hardy-type inequalities with general kernels, J. Math. Anal. Appl., 348 (2008), 411–418. https://doi.org/10.1016/j.jmaa.2008.07.053 doi: 10.1016/j.jmaa.2008.07.053
![]() |
[5] |
J. A. Oguntuase, P. Durojaye, Some new multidimensional Hardy-type inequalities with kernels via convexity, Publ. I. Math., 93 (2013), 153–164. https://doi.org/10.2298/PIM1307153O doi: 10.2298/PIM1307153O
![]() |
[6] |
S. H. Saker, R. R. Mahmoud, A. Peterson, Weighted Hardy-type inequalities on time scales with applications, Mediterr. J. Math., 13 (2016), 585–606. https://doi.org/10.1007/s00009-014-0514-y doi: 10.1007/s00009-014-0514-y
![]() |
[7] |
D. O'Regan, H. M. Rezk, S. H. Saker, Some dynamic inequalities involving Hilbert and Hardy-Hilbert operators with Kernels, Results Math., 73 (2018), 146. https://doi.org/10.1007/s00025-018-0908-4 doi: 10.1007/s00025-018-0908-4
![]() |
[8] |
S. H. Saker, H. M. Rezk, I. Abohela, D. Baleanu, Refinement multidimensional dynamic inequalities with general kernels and measures, J. Inequal. Appl., 2019 (2019), 306. https://doi.org/10.1186/s13660-019-2255-8 doi: 10.1186/s13660-019-2255-8
![]() |
[9] |
E. Awwad, A. I. Saied, Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal., 16 (2022), 393–412. https://doi.org/10.7153/jmi-2022-16-29 doi: 10.7153/jmi-2022-16-29
![]() |
[10] |
P. Řehák, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 942973. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
![]() |
[11] |
L. Yin, F. Qi, Some integral inequalities on time scales, Results Math., 64 (2013), 371–381. https://doi.org/10.1007/s00025-013-0320-z doi: 10.1007/s00025-013-0320-z
![]() |
[12] | R. P. Agarwal, D. O'Regan, S. H. Saker, Hardy type inequalities on time scales, Switzerland: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-44299-0 |
[13] | M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science & Business Media, 2001. https://doi.org/10.1007/978-1-4612-0201-1 |
[14] | M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser, 2003. https://doi.org/10.1007/978-0-8176-8230-9 |
[15] | M. Bohner, S. Georgiev, Multivariable dynamic calculus on time scales, Switzerland: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9 |
1. | Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk, Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales, 2024, 9, 2473-6988, 31926, 10.3934/math.20241534 |