Citation: Myeongmin Kang, Miyoun Jung. Nonconvex fractional order total variation based image denoising model under mixed stripe and Gaussian noise[J]. AIMS Mathematics, 2024, 9(8): 21094-21124. doi: 10.3934/math.20241025
[1] | J. A. Richards, Remote sensing digital image analysis: an introduction, Springer Berlin, Heidelberg, 2013, 343–380. https://doi.org/10.1007/978-3-642-30062-2 |
[2] | I. Makki, R. Younes, C. Francis, T. Bianchi, M. Zucchetti, A survey of landmine detection using hyperspectral imaging, ISPRS J. Photogramm. Remote Sens., 124 (2017), 40–53. https://doi.org/10.1016/j.isprsjprs.2016.12.009 doi: 10.1016/j.isprsjprs.2016.12.009 |
[3] | H. Zhang, J. Li, Y. Huang, L. Zhang, A nonlocal weighted joint sparse representation classification method for hyperspectral imagery, IEEE J-STARS, 7 (2017), 2056–2065. https://doi.org/10.1109/JSTARS.2013.2264720 doi: 10.1109/JSTARS.2013.2264720 |
[4] | Y. Tarabalka, J. Chanussot, J. A. Benediktssons, Segmentation and classification of hyperspectral images using watershed transformation, Pattern Recogn., 43 (2010), 2367–2379. https://doi.org/10.1016/j.patcog.2010.01.016 doi: 10.1016/j.patcog.2010.01.016 |
[5] | D. W. J. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, A. D. Stocker, Anomaly detection from hyperspectral imagery, IEEE Signal Proc. Mag., 19 (2002), 58–69. https://doi.org/10.1109/79.974730 doi: 10.1109/79.974730 |
[6] | M. D. Iordache, J. M. Bioucas-Dias, A. Plaza, Collaborative sparse regression for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., 52 (2014), 341–354. https://doi.org/10.1109/TGRS.2013.2240001 doi: 10.1109/TGRS.2013.2240001 |
[7] | J. Chen, Y. Shao, H. Guo, W. Wang, B. Zhu, Destriping CMODIS data by power filtering, IEEE Trans. Geosci. Remote Sens., 41 (2003), 2119–2124. https://doi.org/10.1109/TGRS.2003.817206 doi: 10.1109/TGRS.2003.817206 |
[8] | J. Chen, H. Lin, Y. Shao, L. Yang, Oblique striping removal in remote sensing imagery based on wavelet transform, Int. J. Remote Sens., 27 (2006), 1717–1723. https://doi.org/10.1080/01431160500185516 doi: 10.1080/01431160500185516 |
[9] | R. Pande-Chhetri, A. Abd-Elrahman, De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering, ISPRS J. Photogramm. Remote Sens., 66 (2011), 620–636. https://doi.org/10.1016/j.isprsjprs.2011.04.003 doi: 10.1016/j.isprsjprs.2011.04.003 |
[10] | L. Sun, R. Neville, K. Staenz, H. P. White, Automatic destriping of Hyperion imagery based on spectral moment matching, J. Can. Remote Sens., 34 (2008), S68–S81. https://doi.org/10.5589/m07-067 doi: 10.5589/m07-067 |
[11] | M. Wegener, Destriping multiple sensor imagery by improved histogram matching, Int. J. Remote Sens., 11 (1990), 859–875. https://doi.org/10.1080/01431169008955060 doi: 10.1080/01431169008955060 |
[12] | H. Shen, L. Zhang, A MAP-based algorithm for destriping and inpainting of remotely sensed images, IEEE Trans. Geosci. Remote Sens., 47 (2009), 1492–1502. https://doi.org/10.1109/TGRS.2008.2005780 doi: 10.1109/TGRS.2008.2005780 |
[13] | M. Bouali, S. Ladjal, Toward optimal destriping of MODIS data using a unidirectional variational model, IEEE Trans. Geosci. Remote Sens., 49 (2011), 2924–2935. https://doi.org/10.1109/TGRS.2011.2119399 doi: 10.1109/TGRS.2011.2119399 |
[14] | Y. Chang, H. Fang, L. Yan, H. Liu, Robust destriping method with unidirectional total variation and framelet regularization, Opt. Express, 21 (2013), 23307–23323. https://doi.org/10.1364/OE.21.023307 doi: 10.1364/OE.21.023307 |
[15] | Y. Chang, L. Yan, H. Fang, H. Liu, Simultaneous destriping and denoising for remote sensing images with unidirectional total variation and sparse representation, IEEE Geosci. Remote Sens. Lett., 11 (2014), 1051–1055. https://doi.org/10.1109/LGRS.2013.2285124 doi: 10.1109/LGRS.2013.2285124 |
[16] | Y. Zhang, G. Zhou, L. Yan, T. Zhang, A destriping algorithm based on TV-Stokes and unidirectional total variation model, Optik, 127 (2016), 428–439. https://doi.org/10.1016/j.ijleo.2015.09.246 doi: 10.1016/j.ijleo.2015.09.246 |
[17] | M. Wang, X. Zheng, J. Pan, B. Wang, Unidirectional total variation destriping using difference curvature in MODIS emissive bands, Infrared Phys. Technol., 75 (2016), 1–11. https://doi.org/10.1016/j.infrared.2015.12.004 doi: 10.1016/j.infrared.2015.12.004 |
[18] | X. Liu, X. Lu, H. Shen, Q. Yuan, Y. Jiao, L. Zhang, Stripe noise separation and removal in remote sensing images by consideration of the global sparsity and local variational properties, IEEE Trans. Geosci. Remote Sens., 54 (2016), 3049-3060. https://doi.org/10.1109/TGRS.2015.2510418 doi: 10.1109/TGRS.2015.2510418 |
[19] | Y. Chang, L. Yan, T. Wu, S. Zhong, Remote sensing image stripe noise removal: from image decomposition perspective, IEEE Trans. Geosci. Remote Sens., 54 (2016), 7018–7031. https://doi.org/10.1109/TGRS.2016.2594080 doi: 10.1109/TGRS.2016.2594080 |
[20] | Y. Chen, T. Z. Huang, X. Zhao, L. J. Deng, J. Huang, Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint, Remote sens., 9 (2017), 559. https://doi.org/10.3390/rs9060559 doi: 10.3390/rs9060559 |
[21] | Y. Chen, T. Z. Huang, L. J. Deng, X. L. Zhao, M. Wang, Group sparsity based regularization model for remote sensing image stripe noise removal, Neurocomputing, 267 (2017), 95–106. https://doi.org/10.1016/j.neucom.2017.05.018 doi: 10.1016/j.neucom.2017.05.018 |
[22] | Y. Chen, T. Z. Huang, X. L. Zhao, Destriping of multispectral remote sensing image using low-rank tensor decomposition, IEEE J-STARS, 11 (2018), 4950–4967. https://doi.org/10.1109/JSTARS.2018.2877722 doi: 10.1109/JSTARS.2018.2877722 |
[23] | H. X. Dou, T. Z. Huang, L. J. Deng, X. L. Zhao, J. Huang, Directional $\ell_0$ sparse modeling for image stripe noise removal, Remote Sens., 10 (2018), 361. https://doi.org/10.3390/rs10030361 doi: 10.3390/rs10030361 |
[24] | S. Qiong, Y. Wang, X. Yan, H. Gu, Remote sensing images stripe noise removal by double sparse regulation and region separation, Remote Sens., 10 (2018), 998. https://doi.org/10.3390/rs10070998 doi: 10.3390/rs10070998 |
[25] | J. Wang, T. Z. Huang, T. H. Ma, X. L. Zhao, Y. Chen, A sheared low-rank model for oblique stripe removal, Appl. Math. Comput., 360 (2019), 167–180. https://doi.org/10.1016/j.amc.2019.03.066 doi: 10.1016/j.amc.2019.03.066 |
[26] | J. L. Wang, T. Z. Huang, X. L. Zhao, J. Huang, T. H. Ma, Y. B. Zheng, Reweighted block sparsity regularization for remote sensing images destriping, IEEE J-STARS, 12 (2019), 4951–4963. https://doi.org/10.1109/JSTARS.2019.2940065 doi: 10.1109/JSTARS.2019.2940065 |
[27] | J. H. Yang, X. L. Zhao, T. H. Ma, Y. Chen, T. Z. Huang, M. Ding, Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization, J. Comput. Appl. Math., 363 (2020), 124–144. https://doi.org/10.1016/j.cam.2019.06.004 doi: 10.1016/j.cam.2019.06.004 |
[28] | X. Wu, H. Qu, L. Zheng, T. Gao, A remote sensing image destriping model based on low-rank and directional sparse constraint, Remote Sens., 13 (2021), 5126. https://doi.org/10.3390/rs13245126 doi: 10.3390/rs13245126 |
[29] | X. Liu, X. Lu, H. Shen, Q. Yuan, L. Zhang, Oblique stripe removal in remote sensing images via oriented variation, arXiv, 2018. https://doi.org/10.48550/arXiv.1809.02043 |
[30] | Q. Song, Z. Huang, H. Ni, K. Bai, Z. Li, Remote sensing images destriping with an enhanced low-rank prior and total variation regulation, Signal Image Video Process., 16 (2022), 1895–1903. https://doi.org/10.1007/s11760-022-02149-8 doi: 10.1007/s11760-022-02149-8 |
[31] | L. Song, H. Huang, Simultaneous destriping and image denoising using a nonparametric model with the EM algorithm, IEEE Trans. Image Process., 32 (2023), 1065–1077. https://doi.org/10.1109/TIP.2023.3239193 doi: 10.1109/TIP.2023.3239193 |
[32] | N. Kim, S. S. Han, C. S. Jeong, ADOM: ADMM-Based optimization model for stripe noise removal in remote sensing image, IEEE Access, 11 (2023), 106587–106606. https://doi.org/10.1109/ACCESS.2023.3319268 doi: 10.1109/ACCESS.2023.3319268 |
[33] | F. Yan, S. Wu, Q. Zhang, Y. Liu, H. Sun, Destriping of remote sensing images by an optimized variational model, Sensors, 23 (2023), 7529. https://doi.org/10.3390/s23177529 doi: 10.3390/s23177529 |
[34] | C. Wang, X. Zhao, Q. Wang, Z. Ma, P. Tang, An inexact proximal majorization-minimization algorithm for remote sensing image stripe noise removal, Numer. Algor., 2024. https://doi.org/10.1007/s11075-023-01743-2 |
[35] | L. I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithm, Phys. D, 60 (1992), 259–268. https://doi.org/10.1016/0167-2789(92)90242-F doi: 10.1016/0167-2789(92)90242-F |
[36] | T. Chan, A. Marquina, P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503–516. https://doi.org/10.1137/S1064827598344169 doi: 10.1137/S1064827598344169 |
[37] | M. Lysaker, A. Lundervold, X. C. Tai, Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), 1579–1590. https://doi.org/10.1109/TIP.2003.819229 doi: 10.1109/TIP.2003.819229 |
[38] | K. Bredies, K. Kunisch, T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492–526. https://doi.org/10.1137/090769521 doi: 10.1137/090769521 |
[39] | F. Li, C. Shen, J. Fan, C. Shen, Image restoration combining a total variational filter and a fourth-order filter, J. Vis. Commun. Image Represent., 18 (2007), 322–330. https://doi.org/10.1016/j.jvcir.2007.04.005 doi: 10.1016/j.jvcir.2007.04.005 |
[40] | K. Papafitsoros, C. B. Sch$\ddot{o}$nlieb, A combined first and second order variational approach for image restoration, J. Math. Imaging Vis., 48 (2014), 308–338. https://doi.org/10.1007/s10851-013-0445-4 doi: 10.1007/s10851-013-0445-4 |
[41] | J. Bai, X. C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492–2502. https://doi.org/10.1109/TIP.2007.904971 doi: 10.1109/TIP.2007.904971 |
[42] | J. Zhang, Z. Wei, L. Xiao, Adaptive fractional-order multi-scale method for image denoising, SIAM J. Imaging Sci., 43 (2012), 39–49. https://doi.org/10.1007/s10851-011-0285-z doi: 10.1007/s10851-011-0285-z |
[43] | R. H. Chan, A. Lanza, S. Morigi, F. Sgallari, An adaptive strategy for the restoration of textured images using fractional order regularization, Numer. Math. Theor. Meth. Appl., 6 (2013), 276–296. https://doi.org/10.4208/nmtma.2013.mssvm15 doi: 10.4208/nmtma.2013.mssvm15 |
[44] | J. Zhang, Z. Hui, L. Xiao, A fast adaptive reweighted residual-feedback iterative algorithm for fractional order total variation regularized multiplicative noise removal of partly-textured images, Signal Process., 98 (2014), 381–395. https://doi.org/10.1016/j.sigpro.2013.12.009 doi: 10.1016/j.sigpro.2013.12.009 |
[45] | J. Zhang, K. Chen, A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J. Imaging Sci., 8 (2015), 2487–2518. https://doi.org/10.1137/14097121X doi: 10.1137/14097121X |
[46] | A. Ullah, W. Chen, M. A. Khan, A new variational approach for restoring images with multiplicative noise, Comput. Math. Appl., 71 (2016), 2034–2050. https://doi.org/10.1016/j.camwa.2016.03.024 doi: 10.1016/j.camwa.2016.03.024 |
[47] | F. Dong, Y. Chen, A fractional-order derivative based variational framework for image denoising, Inverse Probl. Imag., 10 (2016), 27–50. https://doi.org/10.3934/ipi.2016.10.27 doi: 10.3934/ipi.2016.10.27 |
[48] | M. R. Chowdhury, J. Zhang, J. Qin, Y. Lou, Poisson image denoising based on fractional-order total variation, Inverse Probl. Imag., 14 (2020), 77–96. https://doi.org/10.3934/ipi.2019064 doi: 10.3934/ipi.2019064 |
[49] | Y. F. Pu, J. L. Zhou, X. Yuan, Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement, IEEE Trans. Image Process., 19 (2010), 491–511. https://doi.org/10.1109/TIP.2009.2035980 doi: 10.1109/TIP.2009.2035980 |
[50] | Z. Ren, C. He, Q. Zhang, Fractional order total variation regularization for image super-resolution, Signal Process., 93 (2013), 2408–2421. https://doi.org/10.1016/j.sigpro.2013.02.015 doi: 10.1016/j.sigpro.2013.02.015 |
[51] | D. Geman, G. Reynolds, Constrained restoration and recovery of discontinuities, IEEE Trans. Pattern Anal. Mach. Intell., 14 (1992), 367–383. https://doi.org/10.1109/34.120331 doi: 10.1109/34.120331 |
[52] | D. Geman, C. Yang, Nonlinear image recovery with half-quadratic regularization, IEEE Trans. Image Process., 4 (1995), 932–946. https://doi.org/10.1109/83.392335 doi: 10.1109/83.392335 |
[53] | M. Nikolova, M. K. Ng, C. P. Tam, Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction, IEEE Trans. Image Process., 19 (2010), 3073–3088. https://doi.org/10.1109/TIP.2010.2052275 doi: 10.1109/TIP.2010.2052275 |
[54] | S. Oh, H. Woo, S. Yun, M. Kang, Non-convex hybrid total variation for image denoising, J. Vis. Commun. Image Represent., 24 (2013), 332–344. https://doi.org/10.1016/j.jvcir.2013.01.010 doi: 10.1016/j.jvcir.2013.01.010 |
[55] | M. Kang, M. Kang, M. Jung, Nonconvex higher-order regularization based Rician noise removal with spatially adaptive parameters, J. Visual Commun. Image Represent., 32 (2015), 180–193. https://doi.org/10.1016/j.jvcir.2015.08.006 doi: 10.1016/j.jvcir.2015.08.006 |
[56] | T. Adam, R. Paramesran, Hybrid non-convex second-order total variation with applications to non-blind image deblurring, Signal Image Video Process., 14 (2020), 115–123. https://doi.org/10.1007/s11760-019-01531-3 doi: 10.1007/s11760-019-01531-3 |
[57] | Y. Sun, L. Lei, D. Guan, X. Li, G. Xiao, SAR image speckle reduction based on nonconvex hybrid total variation model, IEEE Trans. Geosci. Remote Sens., 59 (2020), 1231–1249. https://doi.org/10.1109/TGRS.2020.3002561 doi: 10.1109/TGRS.2020.3002561 |
[58] | P. Ochs, A. Dosovitskiy, T. Brox, T. Pock, On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision, SIAM J. Imaging Sci., 8 (2015), 331–372. https://doi.org/10.1137/140971518 doi: 10.1137/140971518 |
[59] | E. J. Candés, M. B. Wakin, S. P. Boyd, Enhancing sparsity by reweighted $\ell_1$ minimization, J. Fourier Anal. Appl., 14 (2008), 877–905. https://doi.org/10.1007/s00041-008-9045-x doi: 10.1007/s00041-008-9045-x |
[60] | J. Eckstein, D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55 (1992), 293–318. https://doi.org/10.1007/BF01581204 doi: 10.1007/BF01581204 |
[61] | R. Glowinski, Numerical methods for nonlinear variational problems, Springer Berlin, Heidelberg, 1984. https://doi.org/10.1007/978-3-662-12613-4 |
[62] | S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), 1–122. https://doi.org/10.1561/2200000016 doi: 10.1561/2200000016 |
[63] | H. Carfantan, J. Idier, Statistical linear destriping of satellite-based pushbroom-type images, IEEE Trans. Geosci. Remote Sens., 48 (2010), 1860–1871. https://doi.org/10.1109/TGRS.2009.2033587 doi: 10.1109/TGRS.2009.2033587 |
[64] | K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York, USA: John Wiley & Sons, 1993. |
[65] | K. B. Oldham, J. Spanier, The fractional calculus: theory and applications of differentiation and integration to arbitrary order, New York, USA: Academic Press, 1974. https://doi.org/10.1016/s0076-5392(09)x6012-1 |
[66] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, London, UK: Academic Press, 1999. https://doi.org/10.1016/s0076-5392(99)x8001-5 |
[67] | L. Vese, T. F. Chan, Reduced non-convex functional approximations for image restoration & segmentation, UCLA CAM Report, 1997. |
[68] | H. Attouch, J. Bolte, B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods, Math. Program., 137 (2013), 91–129. https://doi.org/10.1007/s10107-011-0484-9 doi: 10.1007/s10107-011-0484-9 |
[69] | L. P. D. Van den Dries, Tame topology and $o$-minimal structures, New York, NY, USA: Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511525919 |
[70] | A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis., 40 (2011), 120–145. https://doi.org/10.1007/s10851-010-0251-1 doi: 10.1007/s10851-010-0251-1 |
[71] | T. Goldstein, S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323–343. https://doi.org/10.1137/080725891 doi: 10.1137/080725891 |
[72] | Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861 doi: 10.1109/TIP.2003.819861 |