This article implements an efficient analytical technique within three different operators to investigate the solutions of some fractional partial differential equations and their systems. The generalized schemes of the proposed method are derived for every targeted problem under the influence of each fractional derivative operator. The numerical examples of the non-homogeneous fractional Cauchy equation and three-dimensional Navier-Stokes equations are obtained using the new iterative transform method. The obtained results under different fractional derivative operators are found to be identical. The 2D and 3D plots have confirmed the close connection between the exact and obtained results. Moreover, the table shows the higher accuracy of the proposed method.
Citation: Qasim Khan, Anthony Suen, Hassan Khan, Poom Kumam. Comparative analysis of fractional dynamical systems with various operators[J]. AIMS Mathematics, 2023, 8(6): 13943-13983. doi: 10.3934/math.2023714
This article implements an efficient analytical technique within three different operators to investigate the solutions of some fractional partial differential equations and their systems. The generalized schemes of the proposed method are derived for every targeted problem under the influence of each fractional derivative operator. The numerical examples of the non-homogeneous fractional Cauchy equation and three-dimensional Navier-Stokes equations are obtained using the new iterative transform method. The obtained results under different fractional derivative operators are found to be identical. The 2D and 3D plots have confirmed the close connection between the exact and obtained results. Moreover, the table shows the higher accuracy of the proposed method.
[1] | B. Cuahutenango-Barro, M. A. Taneco-Hernández, J. F. Gómez-Aguilar, On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel, Chaos Solitons Fract., 115 (2018), 283–299. https://doi.org/10.1016/j.chaos.2018.09.002 doi: 10.1016/j.chaos.2018.09.002 |
[2] | J. Gómez-Gardenes, V. Latora, Entropy rate of diffusion processes on complex networks, Phys. Rev. E, 78 (2008), 065102. https://doi.org/10.1103/PhysRevE.78.065102 doi: 10.1103/PhysRevE.78.065102 |
[3] | B. Elma, E. Misirli, Two reliable techniques for solving conformable space-time fractional PHI-4 model arising in nuclear physics via $beta$-derivative, Rev. Mex. Fis., 67 (2021), 1–6. https://doi.org/10.31349/revmexfis.67.050707 doi: 10.31349/revmexfis.67.050707 |
[4] | V. B. Chaurasia, D. Kumar, Solution of the time-fractional Navier-Stokes equation, Gen. Math. Notes, 4 (2011), 49–59. |
[5] | J. H. He, Nonlinear oscillation with fractional derivative and its applications, Int. Conf. Vibrating Eng., 98 (1998), 288–291. |
[6] | X. Wu, D. Lai, H. Lu, Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes, Nonlinear Dyn., 69 (2012), 667–683. https://doi.org/10.1007/s11071-011-0295-9 doi: 10.1007/s11071-011-0295-9 |
[7] | J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3 |
[8] | S. Momani, Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput., 177 (2006), 488–494. https://doi.org/10.1016/j.amc.2005.11.025 doi: 10.1016/j.amc.2005.11.025 |
[9] | G. A. Birajdar, Numerical solution of time fractional Navier-Stokes equation by discrete Adomian decomposition method, Nonlinear Eng., 3 (2014), 21–26. https://doi.org/10.1515/nleng-2012-0004 doi: 10.1515/nleng-2012-0004 |
[10] | H. Nasrolahpour, A note on fractional electrodynamics, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2589–2593. https://doi.org/10.1016/j.cnsns.2013.01.005 doi: 10.1016/j.cnsns.2013.01.005 |
[11] | P. Veeresha, D. G. Prakasha, H. M. Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivative, J. Nonlinear Sci., 29 (2019), 1–15. https://doi.org/10.1063/1.5074099 doi: 10.1063/1.5074099 |
[12] | S. Ullah, M. A. Khan, M. Farooq, A new fractional model for the dynamics of the hepatitis B virus using the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 1–4. https://doi.org/10.1140/epjp/i2018-12072-4 doi: 10.1140/epjp/i2018-12072-4 |
[13] | M. A. Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos Solitons Fract., 116 (2018), 227–238. https://doi.org/10.1016/j.chaos.2018.09.039 doi: 10.1016/j.chaos.2018.09.039 |
[14] | M. A. Khan, S. Ullah, K. O. Okosun, K. Shah, A fractional order pine wilt disease model with Caputo-Fabrizio derivative, Adv. Differ. Equ., 2018 (2018), 1–8. https://doi.org/10.1186/s13662-018-1868-4 doi: 10.1186/s13662-018-1868-4 |
[15] | J. Singh, D. Kumar, D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Differ. Equ., 2018 (2018), 1–5. https://doi.org/10.1186/s13662-018-1680-1 doi: 10.1186/s13662-018-1680-1 |
[16] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[17] | S. Das, A note on fractional diffusion equations, Chaos Solitons Fract., 42 (2009), 2074–2079. https://doi.org/10.1016/j.chaos.2009.03.163 doi: 10.1016/j.chaos.2009.03.163 |
[18] | A. D. Polyanin, A. I. Zhurov, Functional constraints method for constructing exact solutions to delay reaction-diffusion equations and more complex nonlinear equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 417–430. https://doi.org/10.1016/j.cnsns.2013.07.017 doi: 10.1016/j.cnsns.2013.07.017 |
[19] | J. Mead, B. Zubik-Kowal, An iterated pseudospectral method for delay partial differential equations, Appl. Numer. Math., 55 (2005), 227–250. https://doi.org/10.1016/j.apnum.2005.02.010 doi: 10.1016/j.apnum.2005.02.010 |
[20] | S. F. Aldosary, R. Swroop, J. Singh, A. Alsaadi, K. S. Nisar, An efficient hybridization scheme for time-fractional Cauchy equations with convergence analysis, AIMS Math., 8 (2023), 1427–1454. https://doi.org/10.3934/math.2023072 doi: 10.3934/math.2023072 |
[21] | S. Bhalekar, V. Daftardar-Gejji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 1 (2011), 1–9. |
[22] | Z. Wang, X. Huang, J. Zhou, A numerical method for delayed fractional-order differential equations: based on G-L definition, Appl. Math. Inf. Sci., 7 (2013), 525–529. http://dx.doi.org/10.12785/amis/072L22 doi: 10.12785/amis/072L22 |
[23] | H. Khan, Q. Khan, F. Tchier, G. Singh, P. Kumam, I. Ullah, et al., The efficient techniques for non-linear fractional view analysis of the KdV equation, Front. Phys., 10 (2022), 924310. https://doi.org/10.3389/fphy.2022.924310 doi: 10.3389/fphy.2022.924310 |
[24] | M. S. Rawashdeh, S. Maitama, Solving coupled system of nonlinear PDE's using the natural decomposition method, Int. J. Pure Appl. Math., 92 (2014), 757–776. |
[25] | M. Rawashdeh, S. Maitama, Solving nonlinear ordinary differential equations using the NDM, J. Appl. Anal. Comput., 5 (2015), 77–88. http://dx.doi.org/10.11948/2015007 doi: 10.11948/2015007 |
[26] | M. Rawashdeh, S. Maitama, Finding exact solutions of nonlinear PDEs using the natural decomposition method, Math. Methods Appl. Sci., 40 (2017), 223–236. https://doi.org/10.1002/mma.3984 doi: 10.1002/mma.3984 |
[27] | H. Eltayeb, Y. T. Abdalla, I. Bachar, M. H. Khabir, Fractional telegraph equation and its solution by natural transform decomposition method, Symmetry, 11 (2019), 1–14. https://doi.org/10.3390/sym11030334 doi: 10.3390/sym11030334 |
[28] | M. H. Cherif, Z. Djelloul, B. Kacem, Fractional natural decomposition method for solving fractional system of nonlinear equations of unsteady flow of a polytropic gas, Nonlinear Stud., 25 (2018), 753–764. |
[29] | A. S. Abdel-Rady, S. Z. Rida, A. A. Arafa, H. R. Abedl-Rahim, Natural transform for solving fractional models, J. Appl. Math. Phys., 3 (2015), 1633–1644. https://doi.org/10.4236/jamp.2015.312188 doi: 10.4236/jamp.2015.312188 |
[30] | K. Shah, H. Khalil, R. A. Khan, Analytical solutions of fractional order diffusion equations by natural transform method, Iran. J. Sci. Technol. Trans. A: Sci., 42 (2018), 1479–1490. https://doi.org/10.1007/s40995-016-0136-2 doi: 10.1007/s40995-016-0136-2 |
[31] | J. H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350 (2006), 87–88. https://doi.org/10.1016/j.physleta.2005.10.005 doi: 10.1016/j.physleta.2005.10.005 |
[32] | N. K. Tripathi, S. Das, S. H. Ong, H. Jafari, M. A. Qurashi, Solution of higher order nonlinear time-fractional reaction diffusion equation, Entropy, 18 (2016), 329. https://doi.org/10.3390/e18090329 doi: 10.3390/e18090329 |
[33] | M. Dehghan, M. Abbaszadeh, A finite difference/finite element technique with error estimate for space fractional tempered diffusion-wave equation, Comput. Math. Appl., 75 (2018), 2903–2914. https://doi.org/10.1016/j.camwa.2018.01.020 doi: 10.1016/j.camwa.2018.01.020 |
[34] | Z. Odibat, S. Momani, Numerical methods for nonlinear partial differential equations of fractional order, Appl. Math. Model., 32 (2008), 28–39. https://doi.org/10.1016/j.apm.2006.10.025 doi: 10.1016/j.apm.2006.10.025 |
[35] | H. Yépez-Martínez, F. Gómez-Aguilar, I. O. Sosa, J. M. Reyes, J. Torres-Jiménez, The Feng's first integral method applied to the nonlinear mKdV space-time fractional partial differential equation, Rev. Mex. Fis., 62 (2016), 310–316. |
[36] | R. Abazari, A. Kılıcman, Application of differential transform method on nonlinear integro-differential equations with proportional delay, Neural Comput. Appl., 24 (2014), 391–397. https://doi.org/10.1007/s00521-012-1235-4 doi: 10.1007/s00521-012-1235-4 |
[37] | A. Atangana, J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus, 133 (2018), 1–22. https://doi.org/10.1140/epjp/i2018-12021-3 doi: 10.1140/epjp/i2018-12021-3 |
[38] | S. Mahmood, R. Shah, H. Khan, M. Arif, Laplace adomian decomposition method for multi dimensional time fractional model of Navier-Stokes equation, Symmetry, 11 (2019), 149. https://doi.org/10.3390/sym11020149 doi: 10.3390/sym11020149 |
[39] | D. Kumar, J. Singh, S. Kumar, Numerical computation of fractional multi-dimensional diffusion equations by using a modified homotopy perturbation method, J. Assoc. Arab Univ. Basic Appl. Sci., 17 (2015), 20–26. https://doi.org/10.1016/j.jaubas.2014.02.002 doi: 10.1016/j.jaubas.2014.02.002 |
[40] | R. L. Bagley, Applications of generalized derivatives to viscoelasticity, Air Force Institute of Technology, 1979. |
[41] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[42] | R. Hilfer, Fractional calculus and regular variation in thermodynamics, Appl. Fract. Calc. Phys., 2000,429–463. https://doi.org/10.1142/9789812817747_0009 doi: 10.1142/9789812817747_0009 |
[43] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
[44] | A. Atangana, Blind in a commutative world: simple illustrations with functions and chaotic attractors, Chaos Solitons Fract., 114 (2018), 347–363. https://doi.org/10.1016/j.chaos.2018.07.022 doi: 10.1016/j.chaos.2018.07.022 |
[45] | S. Abuasad, I. Hashim, Homotopy decomposition method for solving higher-order time-fractional diffusion equation via modified beta derivative, Sains Malays., 47 (2018), 2899–2905. http://dx.doi.org/10.17576/jsm-2018-4711-33 doi: 10.17576/jsm-2018-4711-33 |
[46] | X. W. Zhou, L. Yao, The variation iteration method for Cauchy problems, Comput. Math. Appl., 60 (2010), 756–760. https://doi.org/10.1016/j.camwa.2010.05.022 doi: 10.1016/j.camwa.2010.05.022 |
[47] | A. Shaikh, A. Tassaddiq, K. S. Nisar, D. Baleanu, Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations, Adv. Differ. Equ., 2019 (2019), 1–4. https://doi.org/10.1186/s13662-019-2115-3 doi: 10.1186/s13662-019-2115-3 |
[48] | M. Caputo, Linear models of dissipation whose Q is almost frequency independent—Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x |
[49] | G. M. Mittag-Leffler, Sur la nouvelle fonction $E\alpha(x)$, CR Acad. Sci., 137 (1903), 554–558. |
[50] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel, arXiv Preprint, 2016. https://doi.org/10.48550/arXiv.1602.03408 |
[51] | M. A. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler kernel, Symmetry, 13 (2021), 2055. https://doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055 |
[52] | M. A. Hussein, A review on integral transforms of the fractional derivatives of Caputo Fabrizio and Atangana-Baleanu, Eurasian J. Media Commun., 7 (2022), 17–23. |
[53] | T. G. Thange, A. R. Gade, On Aboodh transform for fractional differential operator, Malaya J. Mat., 8 (2020), 225–259. https://doi.org/10.26637/MJM0801/0038 doi: 10.26637/MJM0801/0038 |
[54] | V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316 (2006), 753–763. https://doi.org/10.1016/j.jmaa.2005.05.009 doi: 10.1016/j.jmaa.2005.05.009 |