One of the statistical tools used in geometric function theory is the generalized distribution which has recently gained popularity due to its use in solving practical issues. In this work, we obtained a new subclass of holomorphic functions, which defined by the convolution of generalized distribution and incomplete beta function associated with subordination in terms of the bell number. Further, we estimate the coefficient inequality and upper bound for a subclass of holomorphic functions. Our findings show a clear relationship between statistical theory and geometric function theory.
Citation: S. Santhiya, K. Thilagavathi. Geometric properties of holomorphic functions involving generalized distribution with bell number[J]. AIMS Mathematics, 2023, 8(4): 8018-8026. doi: 10.3934/math.2023405
One of the statistical tools used in geometric function theory is the generalized distribution which has recently gained popularity due to its use in solving practical issues. In this work, we obtained a new subclass of holomorphic functions, which defined by the convolution of generalized distribution and incomplete beta function associated with subordination in terms of the bell number. Further, we estimate the coefficient inequality and upper bound for a subclass of holomorphic functions. Our findings show a clear relationship between statistical theory and geometric function theory.
[1] | E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 558–577. https://doi.org/10.12691/tjant-3-5-2 doi: 10.12691/tjant-3-5-2 |
[2] | E. T. Bell, The iterated exponential integers, Ann. Math., 35 (1934), 539–557. https://doi.org/10.2307/1968633 doi: 10.2307/1968633 |
[3] | N. Bohra, V. Ravichandran, On confluent hypergeometric functions and generalized Bessel functions, Anal. Math., 43 (2017), 533–545. https://doi.org/10.1007/s10476-017-0203-8 doi: 10.1007/s10476-017-0203-8 |
[4] | M. Caglar, L. I. Cotirla, M. Buyankara, Fekete–szego inequalities for a new subclass of Bi-univalent functions associated with gegenbauer polynomials, Symmetry, 14 (2022), 1572. https://doi.org/10.3390/sym14081572 doi: 10.3390/sym14081572 |
[5] | D. G. Cantor, Power series with integral coefficients, B. Am. Math. Soc., 69 (1963), 362–366. |
[6] | C. Carathéodory, Uber den Variabilitatsbereich der Fourier'schen Konstanten von positiven harmonischen Funktionen, Rendiconti del Circolo Matematico di Palermo, 32 (1911), 193–217. https://doi.org/10.1007/BF03014795 doi: 10.1007/BF03014795 |
[7] | B. C. Carlson, D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15 (1984), 737–745. https://doi.org/10.1137/0515057 doi: 10.1137/0515057 |
[8] | N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, H. M. Srivastava, Starlike functions related to the Bell numbers, Symmetry, 219 (2019), 1–17. https://doi.org/10.3390/sym11020219 doi: 10.3390/sym11020219 |
[9] | P. L. Duren, Univalent functions, Berlin: Springer, 2001. |
[10] | A. Janteng, S. A. Halim, M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7 (2006), 50. |
[11] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, P. Am. Math. Soc., 20 (1969), 8–12. https://doi.org/10.1090/S0002-9939-1969-0232926-9 doi: 10.1090/S0002-9939-1969-0232926-9 |
[12] | W. Koepf, On the Fekete–Szego problem for close-to-convex functions, P. Am. Math. Soc., 101 (1987), 89–95. https://doi.org/10.2307/2046556 doi: 10.2307/2046556 |
[13] | W. Koepf, On the Fekete–Szego problem for close-to-convex functions Ⅱ, Archiv der Math., 49 (1987), 420–433. https://doi.org/10.1007/BF01194100 doi: 10.1007/BF01194100 |
[14] | V. Kumar, N. E. Cho, V. Ravichandran, H. M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca, 69 (2019), 1053–1064. https://doi.org/10.1515/ms-2017-0289 doi: 10.1515/ms-2017-0289 |
[15] | R. J. Libera, E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in P, P. Am. Math. Soc., 87 (1983), 251–257. https://doi.org/10.2307/2043698 doi: 10.2307/2043698 |
[16] | R. J. Libera, E. J. Zlotkiewicz, Early coefficients of the inverse of a regular convex function, P. Am. Math. Soc., 85 (1982), 225–230. https://doi.org/10.1090/S0002-9939-1982-0652447-5 doi: 10.1090/S0002-9939-1982-0652447-5 |
[17] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the Conference on Complex Analysis, 1994,157–169. |
[18] | G. Murugusundaramoorthy, T. Bulboaca, Hankel determinants for new subclasses of analytic functions related to a shell shaped region, Mathematics, 8 (2020), 1041. https://doi.org/10.3390/math8061041 doi: 10.3390/math8061041 |
[19] | A. T. Oladipo, Analytic univalent functions defined by generalized discrete probability distribution, Earthline J. Math. Sci., 5 (2021), 169–178. https://doi.org/10.34198/ejms.5121.169178 doi: 10.34198/ejms.5121.169178 |
[20] | S. Porwal, Generalized distribution and its geometric properties associated with univalent functions, J. Complex Anal., 2018, 8654506. https://doi.org/10.1155/2018/8654506 doi: 10.1155/2018/8654506 |
[21] | R. K. Raina, J. Sokol, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat., 44 (2015), 1427–1433. https://doi.org/10.15672/HJMS.2015449676 doi: 10.15672/HJMS.2015449676 |
[22] | R. K. Raina, J. Sokol, On a class of analytic functions governed by subordination, Acta Uni. Sapientiae Math., 11 (2019), 144–155. https://doi.org/10.1155/2019/6157394 doi: 10.1155/2019/6157394 |
[23] | S. Ruscheweyh, New criteria for univalent functions, P. Am. Math. Soc. 49 (1975), 109–115. https://doi.org/10.2307/2039801 doi: 10.2307/2039801 |
[24] | J. Sokol, D. K. Thomas, Further results on a class of starlike functions related to the Bernoulli lemniscate, Houston J. Math., 44 (2018), 83–95. |