The classification and the geometry of corank one map germs from $ ({\mathbb{C}}^2, 0) \rightarrow ({\mathbb{C}}^3, 0) $ have been studied by Mond [
Citation: Ying Wang, Muhammad Ahsan Binyamin, Tauqeer Iqbal, Saima Aslam, Adnan Aslam. A characterization and implementation of corank one map germs from $ 2 $-space to $ 3 $-space in the computer algebra system SINGULAR[J]. AIMS Mathematics, 2023, 8(2): 3747-3762. doi: 10.3934/math.2023187
The classification and the geometry of corank one map germs from $ ({\mathbb{C}}^2, 0) \rightarrow ({\mathbb{C}}^3, 0) $ have been studied by Mond [
[1] | D. Mond, On the classification of germs of maps from $\mathbb{R}^2$ to $\mathbb{R}^3$, Proc. London Math. Soc., s3-50 (1985), 333–369. https://doi.org/10.1112/plms/s3-50.2.333 doi: 10.1112/plms/s3-50.2.333 |
[2] | D. Mond, Some remarks on the geometry and classification of germs of maps from surfaces to 3-space, Topology, 26 (1987), 361–383. https://doi.org/10.1016/0040-9383(87)90007-3 doi: 10.1016/0040-9383(87)90007-3 |
[3] | T. Gaffney, The structure of $T_{ {\mathcal{A}}_f}$ classification and an application to differential geometry, Proc. Sympos. Pure Math., 40 (1983), 409–427. |
[4] | Y. Kabata, Recognition of plane-to-plane map-germs, Topol. Appl., 202 (2016), 216–238. https://doi.org/10.1016/j.topol.2016.01.011 doi: 10.1016/j.topol.2016.01.011 |
[5] | J. H. Rieger, Families of maps from the plane to the plane, J. London Math. Soc., s2-36 (1987), 351–369. https://doi.org/10.1112/jlms/s2-36.2.351 doi: 10.1112/jlms/s2-36.2.351 |
[6] | J. H. Rieger, A-unimodal map-germs into the plane, Hokkaido Math. J., 33 (2004), 47–64. https://doi.org/10.14492/hokmj/1285766004 doi: 10.14492/hokmj/1285766004 |
[7] | A. Dimca, C. G. Gibson, Contact unimodular germs from the plane to the plane, Q. J. Math., 34 (1983), 281–295. https://doi.org/10.1093/qmath/34.3.281 doi: 10.1093/qmath/34.3.281 |
[8] | A. Dimca, C. G. Gibson, Classification of equidumensional contact unimodular map germs, Math. Scand., 56 (1985), 15–28. |
[9] | M. A. Binyamin, S. Aslam, K. Mehmood, Contact unimodal map germs from the plane to the plane, Comptes Rendus Math., 358 (2020), 923–930. https://doi.org/10.5802/crmath.114 doi: 10.5802/crmath.114 |
[10] | S. Aslam, M. A. Binyamin, G. Pfister, Recognition of unimodal map germs from the plane to the plane by invariants, Int. J. Algebra Comput., 28 (2018), 1199–1208. https://doi.org/10.1142/S0218196718500534 doi: 10.1142/S0218196718500534 |
[11] | M. A. Binyamin, S. Aslam, K. Mehmood, H. Mahmood, M. Ishaq, Recognition of contact map germs from the plane to the plane by invariants, C. R. Acad. Bulg. Sci., 73 (2020), 758–766. https://doi.org/10.7546/CRABS.2020.06.02 doi: 10.7546/CRABS.2020.06.02 |
[12] | S. Aslam, M. A. Binyamin, H. Mahmood, A classifier for equidimensional contact unimodal map germs, Bull. Math. Soc. Sci. Math. Roumanie, 64 (2021), 287–302. |
[13] | M. A. Binyamin, H. Mahmood, S. Kanwal, On the classification of simple maps from the plane to the plane, J. Algebra Appl., 16 (2017), 1750199. https://doi.org/10.1142/S0219498817501997 doi: 10.1142/S0219498817501997 |
[14] | M. A. Binyamin, K. Mehmood, G. Pfister, On Mond's classification of simle map germs from $\mathbb{C}^2$ to $\mathbb{C}^3$, C. R. Acad. Bulg. Sci., 74 (2021), 1109–1119. https://doi.org/10.7546/CRABS.2021.08.01 doi: 10.7546/CRABS.2021.08.01 |
[15] | W. Decker, G. M. Greuel, G. Pfister, H. Schönemann, SINGULAR. Available from: http://www.singular.uni-kl.de. |
[16] | D. Ratcliffe, On the classification and geometry of finite map-germs, Ph.D. Thesis, University of Warwick, 1990. |