Research article

A characterization and implementation of corank one map germs from $ 2 $-space to $ 3 $-space in the computer algebra system SINGULAR

  • Received: 03 September 2022 Revised: 04 November 2022 Accepted: 20 November 2022 Published: 28 November 2022
  • MSC : 58Q05, 14H20

  • The classification and the geometry of corank one map germs from $ ({\mathbb{C}}^2, 0) \rightarrow ({\mathbb{C}}^3, 0) $ have been studied by Mond [1,2]. In this paper we characterize the classification of map germs of corank at most $ 1 $, in terms of certain invariants. Moreover, by using this characterization, we develop an algorithm to compute the type of map germs with out computing the normal form. Also, we give its implementation in the computer algebra system SINGULAR [15].

    Citation: Ying Wang, Muhammad Ahsan Binyamin, Tauqeer Iqbal, Saima Aslam, Adnan Aslam. A characterization and implementation of corank one map germs from $ 2 $-space to $ 3 $-space in the computer algebra system SINGULAR[J]. AIMS Mathematics, 2023, 8(2): 3747-3762. doi: 10.3934/math.2023187

    Related Papers:

  • The classification and the geometry of corank one map germs from $ ({\mathbb{C}}^2, 0) \rightarrow ({\mathbb{C}}^3, 0) $ have been studied by Mond [1,2]. In this paper we characterize the classification of map germs of corank at most $ 1 $, in terms of certain invariants. Moreover, by using this characterization, we develop an algorithm to compute the type of map germs with out computing the normal form. Also, we give its implementation in the computer algebra system SINGULAR [15].



    加载中


    [1] D. Mond, On the classification of germs of maps from $\mathbb{R}^2$ to $\mathbb{R}^3$, Proc. London Math. Soc., s3-50 (1985), 333–369. https://doi.org/10.1112/plms/s3-50.2.333 doi: 10.1112/plms/s3-50.2.333
    [2] D. Mond, Some remarks on the geometry and classification of germs of maps from surfaces to 3-space, Topology, 26 (1987), 361–383. https://doi.org/10.1016/0040-9383(87)90007-3 doi: 10.1016/0040-9383(87)90007-3
    [3] T. Gaffney, The structure of $T_{ {\mathcal{A}}_f}$ classification and an application to differential geometry, Proc. Sympos. Pure Math., 40 (1983), 409–427.
    [4] Y. Kabata, Recognition of plane-to-plane map-germs, Topol. Appl., 202 (2016), 216–238. https://doi.org/10.1016/j.topol.2016.01.011 doi: 10.1016/j.topol.2016.01.011
    [5] J. H. Rieger, Families of maps from the plane to the plane, J. London Math. Soc., s2-36 (1987), 351–369. https://doi.org/10.1112/jlms/s2-36.2.351 doi: 10.1112/jlms/s2-36.2.351
    [6] J. H. Rieger, A-unimodal map-germs into the plane, Hokkaido Math. J., 33 (2004), 47–64. https://doi.org/10.14492/hokmj/1285766004 doi: 10.14492/hokmj/1285766004
    [7] A. Dimca, C. G. Gibson, Contact unimodular germs from the plane to the plane, Q. J. Math., 34 (1983), 281–295. https://doi.org/10.1093/qmath/34.3.281 doi: 10.1093/qmath/34.3.281
    [8] A. Dimca, C. G. Gibson, Classification of equidumensional contact unimodular map germs, Math. Scand., 56 (1985), 15–28.
    [9] M. A. Binyamin, S. Aslam, K. Mehmood, Contact unimodal map germs from the plane to the plane, Comptes Rendus Math., 358 (2020), 923–930. https://doi.org/10.5802/crmath.114 doi: 10.5802/crmath.114
    [10] S. Aslam, M. A. Binyamin, G. Pfister, Recognition of unimodal map germs from the plane to the plane by invariants, Int. J. Algebra Comput., 28 (2018), 1199–1208. https://doi.org/10.1142/S0218196718500534 doi: 10.1142/S0218196718500534
    [11] M. A. Binyamin, S. Aslam, K. Mehmood, H. Mahmood, M. Ishaq, Recognition of contact map germs from the plane to the plane by invariants, C. R. Acad. Bulg. Sci., 73 (2020), 758–766. https://doi.org/10.7546/CRABS.2020.06.02 doi: 10.7546/CRABS.2020.06.02
    [12] S. Aslam, M. A. Binyamin, H. Mahmood, A classifier for equidimensional contact unimodal map germs, Bull. Math. Soc. Sci. Math. Roumanie, 64 (2021), 287–302.
    [13] M. A. Binyamin, H. Mahmood, S. Kanwal, On the classification of simple maps from the plane to the plane, J. Algebra Appl., 16 (2017), 1750199. https://doi.org/10.1142/S0219498817501997 doi: 10.1142/S0219498817501997
    [14] M. A. Binyamin, K. Mehmood, G. Pfister, On Mond's classification of simle map germs from $\mathbb{C}^2$ to $\mathbb{C}^3$, C. R. Acad. Bulg. Sci., 74 (2021), 1109–1119. https://doi.org/10.7546/CRABS.2021.08.01 doi: 10.7546/CRABS.2021.08.01
    [15] W. Decker, G. M. Greuel, G. Pfister, H. Schönemann, SINGULAR. Available from: http://www.singular.uni-kl.de.
    [16] D. Ratcliffe, On the classification and geometry of finite map-germs, Ph.D. Thesis, University of Warwick, 1990.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1355) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog