Research article

Quasi-periodic solutions of three-component Burgers hierarchy

  • Received: 31 July 2023 Revised: 13 September 2023 Accepted: 21 September 2023 Published: 08 October 2023
  • MSC : 37K10, 37K20

  • Starting from a $ 3\times3 $ matrix spectral problem and the characteristic polynomial of the Lax matrix, we propose a trigonal curve, the associated meromorphic functions and three kinds of Abelian differentials. By discussing the asymptotic properties for the Baker-Akhiezer functions and their Riemann theta function expressions, we get quasi-periodic solutions of the three-component Burgers hierarchy. Finally, we straighten out the three-component Burgers flows.

    Citation: Wei Liu, Xianguo Geng, Bo Xue. Quasi-periodic solutions of three-component Burgers hierarchy[J]. AIMS Mathematics, 2023, 8(11): 27742-27761. doi: 10.3934/math.20231420

    Related Papers:

  • Starting from a $ 3\times3 $ matrix spectral problem and the characteristic polynomial of the Lax matrix, we propose a trigonal curve, the associated meromorphic functions and three kinds of Abelian differentials. By discussing the asymptotic properties for the Baker-Akhiezer functions and their Riemann theta function expressions, we get quasi-periodic solutions of the three-component Burgers hierarchy. Finally, we straighten out the three-component Burgers flows.



    加载中


    [1] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equation and Inverse Scattering, Cambridge: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998
    [2] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Berlin: Springer, 1994.
    [3] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of Solitons, the Inverse Scattering Method, New York: Consultants Bureau, 1984.
    [4] Y. Kosmann-Schwarzbach, B. Grammaticos, K. M. Tamizhmani, Integrability of Nonlinear Systems, Berlin: Springer, 1997.
    [5] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Singapore: World Scientific, 2003. http://dx.doi.org/10.1142/5108
    [6] B. A. Dubrovin, Theta functions and non-linear equations, Russian Math. Surveys, 36 (1981), 11–92. http://dx.doi.org/10.1070/RM1981v036n02ABEH002596 doi: 10.1070/RM1981v036n02ABEH002596
    [7] E. Date, S. Tanaka, Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice, Progr. Theoret. Phys. Suppl., 59 (1976), 107–125. http://dx.doi.org/10.1143/PTPS.59.107 doi: 10.1143/PTPS.59.107
    [8] E. Date, S. Tanaka, Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda lattice, Prog. Theor. Phys., 55 (1976), 457–465. http://dx.doi.org/10.1143/ptp.55.457 doi: 10.1143/ptp.55.457
    [9] J. S. Geronimo, F. Gesztesy, H. Holden, Algebro-geometric solutions of the Baxter-Szegő difference equation, Commun. Math. Phys., 258 (2005), 149–177. http://dx.doi.org/10.1007/s00220-005-1305-x doi: 10.1007/s00220-005-1305-x
    [10] C. W. Cao, Y. T. Wu, X. G. Geng, Relation between the Kadometsev-Petviashvili equation and the confocal involutive system, J. Math. Phys., 40 (1999), 3948–3970. http://dx.doi.org/10.1063/1.532936 doi: 10.1063/1.532936
    [11] X. G. Geng, C. W. Cao, Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions, Nonlinearity, 14 (2001), 1433–1452. http://dx.doi.org/10.1088/0951-7715/14/6/302 doi: 10.1088/0951-7715/14/6/302
    [12] F. Gesztesy, H. Holden, Algebro-geometric solutions of the Camassa-Holm hierarchy, Rev. Math. Iberoam., 19 (2003), 73–142.
    [13] H. Lundmark, J. Szmigielski, An inverse spectral problem related to the Geng-Xue two-component peakon equation, Mem. Am. Math. Soc., 244 (2016), 1155. http://dx.doi.org/10.1090/memo/1155 doi: 10.1090/memo/1155
    [14] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, Cambridge: Cambridge University Press, 2003.
    [15] H. Lundmark, J. Szmigielski, Dynamics of interlacing peakons (and shockpeakons) in the Geng-Xue equation, J. Integr. Sys., 2 (2017), xyw014. http://dx.doi.org/10.1093/INTEGR/XYW014 doi: 10.1093/INTEGR/XYW014
    [16] A. R. Its, V. B. Matveev, Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation, Theoret. Math. Phys., 23 (1975), 343–355. http://dx.doi.org/10.1007/BF01038218 doi: 10.1007/BF01038218
    [17] X. G. Geng, H. Liu, The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation, J. Nonlinear Sci., 28 (2018), 739–763. http://dx.doi.org/10.1007/s00332-017-9426-x doi: 10.1007/s00332-017-9426-x
    [18] R. Dickson, F. Gesztesy, K. Unterkofler, A new approach to the Boussinesq hierarchy, Math. Nachr., 198 (1999), 51–108. http://dx.doi.org/10.1002/mana.19991980105 doi: 10.1002/mana.19991980105
    [19] R. Dickson, F. Gesztesy, K. Unterkofler, Algebro-geometric solutions of the Boussinesq hierarchy, Rev. Math. Phys., 11 (1999), 823–879. http://dx.doi.org/10.1142/S0129055X9900026X doi: 10.1142/S0129055X9900026X
    [20] X. G. Geng, L. H. Wu, G. L. He, Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions, Phys. D, 240 (2011), 1262–1288. http://dx.doi.org/10.1016/j.physd.2011.04.020 doi: 10.1016/j.physd.2011.04.020
    [21] G. L. He, L. H. Wu, X. G. Geng, Finite genus solutions to the mixed Boussinesq equation, Sci. Sin. Math., 42 (2012), 711–734. http://dx.doi.org/10.1360/012011-848 doi: 10.1360/012011-848
    [22] X. G. Geng, Y. Y. Zhai, H. H. Dai, Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy, Adv. Math., 263 (2014), 123–153. http://dx.doi.org/10.1016/j.aim.2014.06.013 doi: 10.1016/j.aim.2014.06.013
    [23] M. X. Jia, X. G. Geng, J. Wei, Y. Y. Zhai, H. Liu, Coupled discrete Sawada-Kotera equations and their explicit quasi-periodic solutions, Anal. Math. Phys., 11 (2021), 140. http://dx.doi.org/10.1007/s13324-021-00577-2 doi: 10.1007/s13324-021-00577-2
    [24] L. H. Wu, X. G. Geng, G. L. He, Algebro-geometric solutions to the Manakov hierarchy, Appl. Anal., 95 (2016), 769–800. http://dx.doi.org/10.1080/00036811.2015.1031220 doi: 10.1080/00036811.2015.1031220
    [25] X. G. Geng, J. Wei, Three-sheeted Riemann surface and solutions of the Itoh-Narita-Bogoyavlensky lattice hierarchy, Rev. Math. Phys., 34 (2022), 2250009. http://dx.doi.org/10.1142/S0129055X2250009X doi: 10.1142/S0129055X2250009X
    [26] X. G. Geng, H. Wang, Algebro-geometric constructions of quasi-periodic flows of the Newell hierarchy and applications, IMA J. Appl. Math., 82 (2017), 97–130. http://dx.doi.org/10.1093/imamat/hxw008 doi: 10.1093/imamat/hxw008
    [27] W. Liu, X. G. Geng, B. Xue, Three-component generalisation of Burgers equation and its bi-Hamiltonian structures, Z. Naturforsch. A, 72 (2017), 469–475. http://dx.doi.org/10.1142/S0217984917502992 doi: 10.1142/S0217984917502992
    [28] J. M. Burgers, Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. 1., 17 (1939).
    [29] T. Su, Explicit solutions for a modified 2+1-dimensional coupled Burgers equation by using Darboux transformation, Appl. Math. Lett., 69 (2017), 15–21. http://dx.doi.org/10.1016/j.aml.2017.01.014 doi: 10.1016/j.aml.2017.01.014
    [30] C. W. Cao, X. G. Geng, H. Y. Wang, Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable, J. Math. Phys., 43 (2002), 621–643. http://dx.doi.org/10.1063/1.1415427 doi: 10.1063/1.1415427
    [31] A. M. Wazwaz, Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. Math. Comput., 190 (2007), 1198–1206. http://dx.doi.org/10.1016/j.amc.2007.02.003 doi: 10.1016/j.amc.2007.02.003
    [32] P. Griffiths, J. Harris, Principles of Algebraic Geometry, New York: Wiley, 1994. http://dx.doi.org/10.1002/9781118032527
    [33] D. Mumford, Tata Lectures on Theta II, Boston, Mass: Birkhäuser, 1984.
    [34] H. M. Farkas, I. Kra, Riemann Surfaces, New York: Springer, 1992. http://dx.doi.org/10.1007/978-1-4612-2034-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(824) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog