Research article

Artificial neural network procedures for the waterborne spread and control of diseases

  • Received: 07 July 2022 Revised: 17 September 2022 Accepted: 28 September 2022 Published: 03 November 2022
  • MSC : 34K50, 92B20

  • In this study, a nonlinear mathematical SIR system is explored numerically based on the dynamics of the waterborne disease, e.g., cholera, that is used to incorporate the delay factor through the antiseptics for disease control. The nonlinear mathematical SIR system is divided into five dynamics, susceptible X(u), infective Y(u), recovered Z(u) along with the B(u) and Ch(u) be the contaminated water density. Three cases of the SIR system are observed using the artificial neural network (ANN) along with the computational Levenberg-Marquardt backpropagation (LMB) called ANNLMB. The statistical performances of the SIR model are provided by the selection of the data as 74% for authentication and 13% for both training and testing, together with 12 numbers of neurons. The exactness of the designed ANNLMB procedure is pragmatic through the comparison procedures of the proposed and reference results based on the Adam method. The substantiation, constancy, reliability, precision, and ability of the proposed ANNLMB technique are observed based on the state transitions measures, error histograms, regression, correlation performances, and mean square error values.

    Citation: Naret Ruttanaprommarin, Zulqurnain Sabir, Rafaél Artidoro Sandoval Núñez, Soheil Salahshour, Juan Luis García Guirao, Wajaree Weera, Thongchai Botmart, Anucha Klamnoi. Artificial neural network procedures for the waterborne spread and control of diseases[J]. AIMS Mathematics, 2023, 8(1): 2435-2452. doi: 10.3934/math.2023126

    Related Papers:

  • In this study, a nonlinear mathematical SIR system is explored numerically based on the dynamics of the waterborne disease, e.g., cholera, that is used to incorporate the delay factor through the antiseptics for disease control. The nonlinear mathematical SIR system is divided into five dynamics, susceptible X(u), infective Y(u), recovered Z(u) along with the B(u) and Ch(u) be the contaminated water density. Three cases of the SIR system are observed using the artificial neural network (ANN) along with the computational Levenberg-Marquardt backpropagation (LMB) called ANNLMB. The statistical performances of the SIR model are provided by the selection of the data as 74% for authentication and 13% for both training and testing, together with 12 numbers of neurons. The exactness of the designed ANNLMB procedure is pragmatic through the comparison procedures of the proposed and reference results based on the Adam method. The substantiation, constancy, reliability, precision, and ability of the proposed ANNLMB technique are observed based on the state transitions measures, error histograms, regression, correlation performances, and mean square error values.



    加载中


    [1] T. Butler, J. Knight, S. K. Nath, P. Speelman, S. K. Roy, M. A. K. Azad, Typhoid fever complicated by intestinal perforation: A persisting fatal disease requiring surgical management, Rev. Infect. Dis., 7 (1985), 244−256. https://doi.org/10.1093/clinids/7.2.244 doi: 10.1093/clinids/7.2.244
    [2] A. B. Labrique, S. S. Sikder, L. J. Krain, K. P. West Jr, P. Christian, M. Rashid, et al., A vaccine-preventable cause of maternal deaths, Emerg. Infect. Dis., 18 (2012), 1401−1404. https://doi.org/10.3201/eid1809.120241 doi: 10.3201/eid1809.120241
    [3] A. K. Siddique, K. Akram, K. Zaman, S. Laston, A. Salam, R. N. Majumdar, et al., Why treatment centres failed to prevent cholera deaths among Rwandan refugees in Goma, Zaire, Lancet, 345 (1995), 359−361. https://doi.org/10.1016/S0140-6736(95)90344-5 doi: 10.1016/S0140-6736(95)90344-5
    [4] D. E. Snider Jr, G. J. Caras, Isoniazid-associated Hepatitis deaths: A review of available information, Am. Rev. Respir. Dis., 145 (1992), 494−497. https://doi.org/10.1164/ajrccm/145.2_Pt_1.494 doi: 10.1164/ajrccm/145.2_Pt_1.494
    [5] P. Bardhan, A. S. G. Faruque, A. Naheed, D. A. Sack, Decreasing shigellosis-related deaths without Shigella spp.-specific interventions, Asia, Emerg. Infect. Dis., 16 (2010), 1718−1723. https://doi.org/10.3201/eid1611.090934 doi: 10.3201/eid1611.090934
    [6] G. Corrêa, R. Vilela, R. F. Menna-Barreto, V. Midlej, M. Benchimol, Cell death induction in Giardia lamblia: Effect of beta-lapachone and starvation, Parasitol. Int., 58 (2009), 424−437. https://doi.org/10.1016/j.parint.2009.08.006 doi: 10.1016/j.parint.2009.08.006
    [7] J. Snow, B. W. Richardson, Snow on cholera: Being a reprint of two papers, JAMA, 108 (1937), 421. https://doi.org/10.1001/jama.1937.02780050077036 doi: 10.1001/jama.1937.02780050077036
    [8] A. R. Tuite, C. H. Chan, D. N. Fisman, Cholera, canals, and contagion: Rediscovering Dr Beck's report, J. Public Health Pol., 32 (2011), 320−333. https://doi.org/10.1057/jphp.2011.20 doi: 10.1057/jphp.2011.20
    [9] G. Donatelli, A. Spota, F. Cereatti, S. Granieri, I. Dagher, R. Chiche, et al., Endoscopic internal drainage for the management of leak, fistula, and collection after sleeve gastrectomy: Our experience in 617 consecutive patients, Surg. Obes. Relat. Dis., 17 (2021), 1432−1439. https://doi.org/10.1016/j.soard.2021.03.013 doi: 10.1016/j.soard.2021.03.013
    [10] D. Lippi, E. Gotuzzo, The greatest steps towards the discovery of Vibrio cholerae, Clin. Microbiol. Infect., 20 (2014), 191−195. https://doi.org/10.1111/1469-0691.12390 doi: 10.1111/1469-0691.12390
    [11] R. J. Borroto, Ecology of Vibrio cholerae serogroup 01 in aquatic environments, Rev. Panam. Salud Publ., 2 (1997), 328−333. https://doi.org/10.1590/s1020-49891997000100002 doi: 10.1590/s1020-49891997000100002
    [12] W. H. O. Cholera, Weekly epidemiological record, World Health Organ., 82 (2007), 273−284.
    [13] E. Bertuzzo, L. Mari, L. Righetto, M. Gatto, R. Casagrandi, M. Blokesch, et al., Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak, Geophys. Res. Lett., 38 (2011), L06403. https://doi.org/10.1029/2011GL046823 doi: 10.1029/2011GL046823
    [14] M. Ghosh, J. B. Shukla, P. Chandra, P. Sinha, An epidemiological model for carrier dependent infectious diseases with environmental effect, Int. J. Appl. Sc. Comp., 7 (2000), 188−204.
    [15] A. Shangbing, Global stability of equilibria in a tick-borne disease model, Math. Biosci. Eng., 4 (2007), 567–572. https://doi.org/10.3934/mbe.2007.4.567 doi: 10.3934/mbe.2007.4.567
    [16] N. T. J. Bailey, Spatial models in the epidemiology of infectious diseases, Lect. Notes Math., 38 (1980), 233−261. https://doi.org/10.1007/978-3-642-61850-5_22 doi: 10.1007/978-3-642-61850-5_22
    [17] H. W. Hethcote, Qualitative analysis of communicable disease models, Math. Biosci., 28 (1976), 335−356. https://doi.org/10.1016/0025-5564(76)90132-2 doi: 10.1016/0025-5564(76)90132-2
    [18] P. Das, D. Mukherjee, A. K. Sarkar, Study of carrier dependent infectious disease-cholera, J. Biol. Syst., 13 (2005), 233−244. https://doi.org/10.1142/S0218339005001495 doi: 10.1142/S0218339005001495
    [19] S. Singh, P. Chandra, J. B. Shukla, Modeling and analysis of the spread of carrier dependent infectious diseases with environmental effects, J. Biol. Syst., 11 (2003), 325−335. https://doi.org/10.1142/S0218339003000877 doi: 10.1142/S0218339003000877
    [20] A. K. Misra, A. Sharma, J. B. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Model., 53 (2011), 1221−1228. https://doi.org/10.1016/j.mcm.2010.12.005 doi: 10.1016/j.mcm.2010.12.005
    [21] V. Capasso, S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev. Epidemiol. Sante, 27 (1979), 121–132.
    [22] C. T. Codec-o, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect. Dis., 1 (2001), 1. https://doi.org/10.1186/1471-2334-1-1 doi: 10.1186/1471-2334-1-1
    [23] M. Pascual, M. J. Bouma, A. P. Dobson, Cholera and climate: Revisiting the quantitative evidence, Microbes Infect., 4 (2002), 237−245. https://doi.org/10.1016/S1286-4579(01)01533-7 doi: 10.1016/S1286-4579(01)01533-7
    [24] M. A. Jensen, S. M. Faruque, J. J. Mekalanos, B. R. Levin, Modeling the role of bacteriophage in the control of cholera outbreaks, Proc. Natl. Acad. Sci., 103 (2006), 4652−4657. https://doi.org/10.1073/pnas.0600166103 doi: 10.1073/pnas.0600166103
    [25] E. Bertuzzo, S. Azaele, A. Maritan, M. Gatto, I. Rodriguez-Iturbe, A. Rinaldo, On the space-time evolution of a cholera epidemic, Water Resour. Res., 44 (2008), L06403. https://doi.org/10.1029/2007WR006211 doi: 10.1029/2007WR006211
    [26] R. M. Anderson, R. M. May, Vaccination against rubella and measles: Qualitative investigation of different policies, J. Hyg. Cambridge, 90 (1983), 259–352. https://doi.org/10.1017/s002217240002893x doi: 10.1017/s002217240002893x
    [27] B. Shulgin, L. Stone, Z. Agur, Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol., 60 (1998), 1123–1148. https://doi.org/10.1006/S0092-8240(98)90005-2 doi: 10.1006/S0092-8240(98)90005-2
    [28] X. Liu, Y. Takeuchi, S. Iwami, SVIR epidemic models with vaccination strategies, J. Theor. Biol., 253 (2008), 1–11. https://doi.org/10.1016/j.jtbi.2007.10.014 doi: 10.1016/j.jtbi.2007.10.014
    [29] R. Naresh, S. Pandey, A. K. Misra, Analysis of a vaccination model for carrier dependent infectious diseases with environmental effects, Nonlinear Anal. Model. Control, 13 (2008), 331−350. https://doi.org/10.15388/NA.2008.13.3.14561 doi: 10.15388/NA.2008.13.3.14561
    [30] T. Zhang, Z. Teng, An SIRVS epidemic model with pulse vaccination strategy, J. Theor. Biol., 250 (2008), 375−381. https://doi.org/10.1016/j.jtbi.2007.09.034 doi: 10.1016/j.jtbi.2007.09.034
    [31] D. L. Chao, M. E. Halloran, I. M. Longini Jr., Vaccination strategies for epidemic cholera in Haiti with implications for the developing world, Proc. Natl. Acad. Sci., 108 (2011), 7081−7085. https://doi.org/10.1073/pnas.110214910 doi: 10.1073/pnas.110214910
    [32] A. R. Tuite, J. Tien, M. Eisenberg, D. J. D. Earn, J. Ma, D. N. Fisman, Cholera epidemic in Haiti, 2010: Using a transmission model to explain spatial spread of disease and identify optimal control interventions, Ann. Intern. Med., 154 (2011), 593−601. https://doi.org/10.7326/0003-4819-154-9-201105030-00334 doi: 10.7326/0003-4819-154-9-201105030-00334
    [33] Z. Sabir, Stochastic numerical investigations for nonlinear three-species food chain system, Int. J. Biomath., 15 (2022), 2250005. https://doi.org/10.1142/S179352452250005X doi: 10.1142/S179352452250005X
    [34] Z. Sabir, T. Botmart, M.A.Z. Raja, R. Sadat, M.R. Ali, A.A. Alsulami, et al., Artificial neural network scheme to solve the nonlinear influenza disease model, Biomed. Signal Proces., 75 (2022), 103594. https://doi.org/10.1016/j.bspc.2022.103594 doi: 10.1016/j.bspc.2022.103594
    [35] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics, Symmetry, 12 (2020), 1628. https://doi.org/10.3390/sym12101628 doi: 10.3390/sym12101628
    [36] M. Umar, Z. Sabir, F. Amin, J. L. Guirao, M. A. Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells, Eur. Phys. J. Plus, 135 (2020), 403. https://doi.org/10.1140/epjp/s13360-020-00417-5 doi: 10.1140/epjp/s13360-020-00417-5
    [37] Z. Sabir, Neuron analysis through the swarming procedures for the singular two-point boundary value problems arising in the theory of thermal explosion, Eur. Phys. J. Plus, 137 (2022), 638. https://doi.org/10.1140/epjp/s13360-022-02869-3 doi: 10.1140/epjp/s13360-022-02869-3
    [38] B. Wang, J. F. Gomez-Aguilar, Z. Sabir, M. A. Z. Raja, W. F. Xia, H. Jahanshahi, et al., Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks, Fractals, 30 (2022), 2240147. https://doi.org/10.1142/S0218348X22401478 doi: 10.1142/S0218348X22401478
    [39] M. Umar, F. Amin, H. A. Wahab, D. Baleanu, Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery, Appl. Soft Comput., 85 (2019), 105826. https://doi.org/10.1016/j.asoc.2019.105826 doi: 10.1016/j.asoc.2019.105826
    [40] Z. Sabir, H. A. Wahab, Evolutionary heuristic with Gudermannian neural networks for the nonlinear singular models of third kind, Phys. Scr., 96 (2021), 125261. https://doi.org/10.1088/1402-4896/ac3c56 doi: 10.1088/1402-4896/ac3c56
    [41] T. Saeed, Z. Sabir, M. S. Alhodaly, H. H. Alsulami, Y. G. Sánchez, An advanced heuristic approach for a nonlinear mathematical based medical smoking model, Results Phys., 32 (2022), 105137. https://doi.org/10.1016/j.rinp.2021.105137 doi: 10.1016/j.rinp.2021.105137
    [42] A. K. Misra, V. Singh, A delay mathematical model for the spread and control of water borne diseases, J. Theor. Biol., 301 (2012), 49−56. https://doi.org/10.1016/j.jtbi.2012.02.006 doi: 10.1016/j.jtbi.2012.02.006
    [43] Z. Sabir, M. A. Z. Raja, M. Shoaib, J. F. Aguilar, FMNEICS: Fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane-Emden system, Comp. Appl. Math., 39 (2020), 303. https://doi.org/10.1007/s40314-020-01350-0 doi: 10.1007/s40314-020-01350-0
    [44] H. Günerhan, E. Çelik, Analytical and approximate solutions of fractional partial differential-algebraic equations, Appl. Math. Nonlinear Sci., 5 (2020), 109−120. https://doi.org/10.2478/amns.2020.1.00011 doi: 10.2478/amns.2020.1.00011
    [45] K. A. Touchent, Z. Hammouch, T. Mekkaoui, A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives, Appl. Math. Nonlinear Sci., 5 (2020), 35−48. https://doi.org/10.2478/amns.2020.2.00012 doi: 10.2478/amns.2020.2.00012
    [46] Z. Sabir, M. A. Z. Raja, J. L. Guirao, T. Saeed, Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model, Chaos Soliton. Fract., 152 (2021), 111404. https://doi.org/10.1016/j.chaos.2021.111404 doi: 10.1016/j.chaos.2021.111404
    [47] E. İlhan, İ. O. Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear Sci., 5 (2020), 171−188. https://doi.org/10.2478/amns.2020.1.00016 doi: 10.2478/amns.2020.1.00016
    [48] H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 129−138. https://doi.org/10.2478/AMNS.2019.1.00013 doi: 10.2478/AMNS.2019.1.00013
    [49] T. Botmart, N. Yotha, P. Niamsup, W. Weera, Hybrid adaptive pinning control for function projective synchronization of delayed neural networks with mixed uncertain couplings, Complexity, 2017 (2017), 4654020. http://dx.doi.org/10.1155/2017/4654020 doi: 10.1155/2017/4654020
    [50] T. Botmart, W. Weera, Guaranteed cost control for exponential synchronization of cellular neural networks with mixed time-varying delays via hybrid feedback control, Abstr. Appl. Anal., 2013 (2013), 175796. https://doi.org/10.1155/2013/175796 doi: 10.1155/2013/175796
    [51] P. Lakshminarayana, K. Vajravelu, G. Sucharitha, S. Sreenadh, Peristaltic slip flow of a Bingham fluid in an inclined porous conduit with Joule heating, Appl. Math. Nonlinear Sci., 3 (2018), 41−54. https://doi.org/10.21042/AMNS.2018.1.00005 doi: 10.21042/AMNS.2018.1.00005
    [52] T. Sajid, S. Tanveer, Z. Sabir, J. L. G. Guirao, Impact of activation energy and temperature-dependent heat source/sink on maxwell-sutterby fluid, Math. Probl. Eng., 2020 (2020), 5251804. https://doi.org/10.1155/2020/5251804 doi: 10.1155/2020/5251804
    [53] R. Ahmad, A. Farooqi, J. Zhang, N. Ali, Steady flow of a power law fluid through a tapered non-symmetric stenotic tube, Appl. Math. Nonlinear Sci., 4 (2019), 255−266. https://doi.org/10.2478/AMNS.2019.1.00022 doi: 10.2478/AMNS.2019.1.00022
    [54] N. Moslemi, B. Abdi, S. Gohari, I. Sudin, E. Atashpaz-Gargari, N. Redzuan, et al., Thermal response analysis and parameter prediction of additively manufactured polymers, Appl. Therm. Eng., 212 (2022), 118533. https://doi.org/10.1016/j.applthermaleng.2022.118533 doi: 10.1016/j.applthermaleng.2022.118533
    [55] N. Moslemi, S. Gohari, B. Abdi, I. Sudin, H. Ghandvar, N. Redzuan, et al., A novel systematic numerical approach on determination of heat source parameters in welding process, J. Mater. Res. Technol., 18 (2022), 4427−4444. https://doi.org/10.1016/j.jmrt.2022.04.039 doi: 10.1016/j.jmrt.2022.04.039
    [56] N. Moslemi, B. Abdi, S. Gohari, I. Sudin, N. Redzuan, A. Ayob, et al., Influence of welding sequences on induced residual stress and distortion in pipes, Constr. Build. Mater., 342 (2022), 127995. https://doi.org/10.1016/j.conbuildmat.2022.127995 doi: 10.1016/j.conbuildmat.2022.127995
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1418) PDF downloads(122) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog