Research article Special Issues

Efficient thyroid disorder identification with weighted voting ensemble of super learners by using adaptive synthetic sampling technique

  • Received: 27 April 2023 Revised: 08 July 2023 Accepted: 01 August 2023 Published: 14 August 2023
  • MSC : 62J02, 62J99

  • There are millions of people suffering from thyroid disease all over the world. For thyroid cancer to be effectively treated and managed, a correct diagnosis is necessary. In this article, we suggest an innovative approach for diagnosing thyroid disease that combines an adaptive synthetic sampling method with weighted average voting (WAV) ensemble of two distinct super learners (SLs). Resampling techniques are used in the suggested methodology to correct the class imbalance in the datasets and a group of two SLs made up of various base estimators and meta-estimators is used to increase the accuracy of thyroid cancer identification. To assess the effectiveness of our suggested methodology, we used two publicly accessible datasets: the KEEL thyroid illness (Dataset1) and the hypothyroid dataset (Dataset2) from the UCI repository. The findings of using the adaptive synthetic (ADASYN) sampling technique in both datasets revealed considerable gains in accuracy, precision, recall and F1-score. The WAV ensemble of the two distinct SLs that were deployed exhibited improved performance when compared to prior existing studies on identical datasets and produced higher prediction accuracy than any individual model alone. The suggested methodology has the potential to increase the accuracy of thyroid cancer categorization and could assist with patient diagnosis and treatment. The WAV ensemble strategy computational complexity and the ideal choice of base estimators in SLs continue to be constraints of this study that call for further investigation.

    Citation: Noor Afshan, Zohaib Mushtaq, Faten S. Alamri, Muhammad Farrukh Qureshi, Nabeel Ahmed Khan, Imran Siddique. Efficient thyroid disorder identification with weighted voting ensemble of super learners by using adaptive synthetic sampling technique[J]. AIMS Mathematics, 2023, 8(10): 24274-24309. doi: 10.3934/math.20231238

    Related Papers:

  • There are millions of people suffering from thyroid disease all over the world. For thyroid cancer to be effectively treated and managed, a correct diagnosis is necessary. In this article, we suggest an innovative approach for diagnosing thyroid disease that combines an adaptive synthetic sampling method with weighted average voting (WAV) ensemble of two distinct super learners (SLs). Resampling techniques are used in the suggested methodology to correct the class imbalance in the datasets and a group of two SLs made up of various base estimators and meta-estimators is used to increase the accuracy of thyroid cancer identification. To assess the effectiveness of our suggested methodology, we used two publicly accessible datasets: the KEEL thyroid illness (Dataset1) and the hypothyroid dataset (Dataset2) from the UCI repository. The findings of using the adaptive synthetic (ADASYN) sampling technique in both datasets revealed considerable gains in accuracy, precision, recall and F1-score. The WAV ensemble of the two distinct SLs that were deployed exhibited improved performance when compared to prior existing studies on identical datasets and produced higher prediction accuracy than any individual model alone. The suggested methodology has the potential to increase the accuracy of thyroid cancer categorization and could assist with patient diagnosis and treatment. The WAV ensemble strategy computational complexity and the ideal choice of base estimators in SLs continue to be constraints of this study that call for further investigation.



    加载中


    [1] S. Grodski, T. Brown, S. Sidhu, A. Gill, B. Robinson, D. Learoyd, et al., Increasing incidence of thyroid cancer is due to increased pathologic detection, Surgery, 144 (2008), 1038–1043.
    [2] J. Kim, J. E. Gosnell, S. A. Roman, Geographic influences in the global rise of thyroid cancer, Nat. Rev. Endocrinol., 16 (2020), 17–29.
    [3] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: Cancer J. Clin., 71 (2021), 209–249. https://doi.org/10.3322/caac.21660 doi: 10.3322/caac.21660
    [4] L. Enewold, K. Zhu, E. Ron, A. J. Marrogi, A. Stojadinovic, G. E. Peoples, et al., Rising thyroid cancer incidence in the United States by demographic and tumor characteristics, 1980–2005, Cancer Epidem. Biomar., 18 (2009), 784–791. https://doi.org/10.1109/JMEMS.2009.2023841 doi: 10.1109/JMEMS.2009.2023841
    [5] L. Davies, H. G. Welch, Current thyroid cancer trends in the United States, JAMA Otolaryngology-Head Neck Surgery, 140 (2014), 317. https://doi.org/10.1016/j.neucom.2014.03.007 doi: 10.1016/j.neucom.2014.03.007
    [6] P. B. Manoj, A. Innisai, D. S. Hameed, A. Khader, M. Gopanraj, N. H. Ihare, Correlation of high-resolution ultrasonography findings of thyroid nodules with ultrasound-guided fine-needle aspiration cytology in detecting malignant nodules: A retrospective study in Malabar region of Kerala, South India, J. Fam. Med. Prim. Care, 8 (2019), 1613.
    [7] H. Tan, Z. Li, N. Li, J. Qian, F. Fan, H. Zhong, et al., Thyroid imaging reporting and data system combined with Bethesda classification in qualitative thyroid nodule diagnosis, Medicine, 98 (2019), 2019.
    [8] A. N. Rajalakshmi, F. Begam, Thyroid Hormones in the Human Body: A review, J. Drug Delivery Ther., 11 (2021), 178–182. https://doi.org/10.22270/jddt.v11i5.5039 doi: 10.22270/jddt.v11i5.5039
    [9] A. K. Lee, P. M. A. Tacanay, P. Siy, D. T. Argamosa, Ectopic papillary thyroid carcinoma presenting as right lateral neck mass, JAFES, 37 (2022), 2022.
    [10] M. I. Larg, D. Apostu, C. Peștean, K. Gabora, I. C. Bădulescu, E. Olariu, et al., Evaluation of malignancy risk in 18F-FDG PET/CT thyroid incidentalomas, Diagnostics, 9 (2019), 92. https://doi.org/10.3390/diagnostics9030092 doi: 10.3390/diagnostics9030092
    [11] M. Hanan, E. Fatma, A. Aly, A. Medhat, Evaluation of Incidental Thyroid Findings Detected by Positron Emission Tomography/Computed Tomography, Medical J. Cairo University, 87 (2019), 819–826. https://doi.org/10.21608/mjcu.2019.52541 doi: 10.21608/mjcu.2019.52541
    [12] S. Quazi, Artificial intelligence and machine learning in precision and genomic medicine, Med. Oncol., 39 (2022), 120.
    [13] K. Preuss, N. Thach, X. Liang, M. Baine, J. Chen, C. Zhang, et al., Using quantitative imaging for personalized medicine in pancreatic cancer: a review of radiomics and deep learning applications, Cancers, 14 (2022), 1654. https://doi.org/10.3390/cancers14071654 doi: 10.3390/cancers14071654
    [14] N. Shusharina, D. Yukhnenko, S. Botman, V. Sapunov, V. Savinov, G. Kamyshov, et al., Modern methods of diagnostics and treatment of neurodegenerative diseases and depression, Diagnostics, 13 (2023), 573. https://doi.org/10.3390/diagnostics13030573 doi: 10.3390/diagnostics13030573
    [15] S. Khalil, U. Nawaz, Zubariah, Z. Mushtaq, S. Arif, M. Z. ur Rehman, et al., Enhancing ductal carcinoma Classification using transfer learning with 3D U-Net models in breast cancer imaging, Appl. Sci., 13 (2023), 4255.
    [16] A. M. Antoniadi, Y. Du, Y. Guendouz, L. Wei, C. Mazo, B. A. Becker, et al., Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: A systematic review, Appl. Sci., 11 (2021), 5088.
    [17] Z. Mushtaq, M. F. Qureshi, M. J. Abbass, S. M. Q. AlFakih, Effective kernelprincipal component analysis based approach for wisconsin breast cancer diagnosis, Electron. Lett., 59 (2023).
    [18] X. M. Keutgen, H. Li, K. Memeh, J. Conn Busch, J. Williams, L. Lan, D. Sarne, et al., A machine-learning algorithm for distinguishing malignant from benign indeterminate thyroid nodules using ultrasound radiomic features, J. Med. Imaging, 9 (2022), 034501–034501.
    [19] V. V. Vadhiraj, A. Simpkin, J. O'Connell, N. Singh Ospina, S. Maraka, D. T. O'Keeffe, Ultrasound image classification of thyroid nodules using machine learning techniques, Medicina, 57 (2021), 527. https://doi.org/10.3390/medicina57060527 doi: 10.3390/medicina57060527
    [20] M. Bereby-Kahane, R. Dautry, E. Matzner-Lober, F. Cornelis, D. Sebbag-Sfez, V. Place, et al., Prediction of tumor grade and lymphovascular space invasion in endometrial adenocarcinoma with MR imaging-based radiomic analysis, Diagn. Interv. Imag., 101 (2020), 401–411.
    [21] K. E. Fasmer, E. Hodneland, J. A. Dybvik, K. Wagner-Larsen, J. Trovik, A. Salvesen, et al., Whole-volume tumor MRI radiomics for prognostic modeling in endometrial cancer, J. Magn. Reson. Imaging, 53 (2021), 928–937.
    [22] A. Prete, P. Borges de Souza, S. Censi, M. Muzza, N. Nucci, M. Sponziello, Update on fundamental mechanisms of thyroid cancer, Front. Endocrinol., 11 (2020), 102.
    [23] N. Pozdeyev, M. M. Rose, D. W. Bowles, R. E. Schweppe, Molecular therapeutics for anaplastic thyroid cancer, In: Seminars in Cancer Biology, 61 (2020), 23–29. https://doi.org/10.1016/j.semcancer.2020.01.005
    [24] Y. C. Zhu, P. F. Jin, J. Bao, Q. Jiang, X. Wang, Thyroid ultrasound image classification using a convolutional neural network, Ann. Transl. Med., 9 (2021).
    [25] M. R. Kwon, J. H. Shin, H. Park, H. Cho, S. Y. Hahn, K. W. Park, Radiomics study of thyroid ultrasound for predicting BRAF mutation in papillary thyroid carcinoma: Preliminary results, Am. J. Neuroradiol., 41 (2020), 700–705. https://doi.org/10.3174/ajnr.A6505 doi: 10.3174/ajnr.A6505
    [26] Y. Wang, W. Yue, X. Li, S. Liu, L. Guo, H. Xu, et al., Comparison study of radiomics and deep learning-based methods for thyroid nodules classification using ultrasound images, Ieee Access, 8 (2020), 52010–52017.
    [27] D. Chen, J. Hu, M. Zhu, N. Tang, Y. Yang, Y. Feng, Diagnosis of thyroid nodules for ultrasonographic characteristics indicative of malignancy using random forest, BioData Min., 13 (2020), 1–21.
    [28] H. K. Shivastuti, J. Manhas, V. Sharma, Performance evaluation of SVM and random forest for the diagnosis of thyroid disorder, Int. J. Res. Appl. Sci. Eng. Technol., 9 (2021), 945–947.
    [29] H. Abbad Ur Rehman, C. Y. Lin, Z. Mushtaq, Effective K-nearest neighbor algorithms performance analysis of thyroid disease, J. Chin. Inst. Eng., 44 (2021), 77–87. https://doi.org/10.14358/PERS.87.2.77 doi: 10.14358/PERS.87.2.77
    [30] T. Akhtar, S. O. Gilani, Z. Mushtaq, S. Arif, M. Jamil, Y. Ayaz, et al., Effective voting ensemble of homogenous ensembling with multiple attribute-selection approaches for improved identification of thyroid disorder, Electronics, 10 (2021), 3026.
    [31] L. C. Zhu, Y. L. Ye, W. H. Luo, M. Su, H. P. Wei, X. B. Zhang, et al., A model to discriminate malignant from benign thyroid nodules using artificial neural network, PLoS One, 8 (2013), e82211. https://doi.org/10.1371/journal.pone.0082211 doi: 10.1371/journal.pone.0082211
    [32] B. Zhang, J. Tian, S. Pei, Y. Chen, X. He, Y. Dong, et al., Machine learning–assisted system for thyroid nodule diagnosis, Thyroid, 29 (2019), 858–867. https://doi.org/10.1089/thy.2018.0380 doi: 10.1089/thy.2018.0380
    [33] A. K. Singh, A comparative study on disease classification using machine learning algorithms, In Proceedings of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE), 2019.
    [34] E. Sonuç, Thyroid disease classification using machine learning algorithms, In: Journal of Physics: Conference Series, vol. 1963, p. 012140, IOP Publishing, 2021. https://doi.org/10.1088/1742-6596/1963/1/012140
    [35] P. Poudel, A. Illanes, E. J. Ataide, N. Esmaeili, S. Balakrishnan, M. Friebe, Thyroid ultrasound texture classification using autoregressive features in conjunction with machine learning approaches, IEEE Access, 7 (2019), 79354–79365. https://doi.org/10.1109/ACCESS.2019.2923547 doi: 10.1109/ACCESS.2019.2923547
    [36] D. C. Yadav, S. Pal, Thyroid prediction using ensemble data mining techniques, Int. J. Inf. Technol., 14 (2022), 1273–1283.
    [37] S. S. Z. Mousavi, M. M. Zanjireh, M. Oghbaie, Applying computational classification methods to diagnose Congenital Hypothyroidism: A comparative study, Inf. Medicine Unlocked, 18 (2020), 100281.
    [38] D. T. Nguyen, J. K. Kang, T. D. Pham, G. Batchuluun, K. R. Park, Ultrasound image-based diagnosis of malignant thyroid nodule using artificial intelligence, Sensors, 20 (2020), 1822. https://doi.org/10.3390/s20071822 doi: 10.3390/s20071822
    [39] G. Chaubey, D. Bisen, S. Arjaria, V. Yadav, Thyroid disease prediction using machine learning approaches, Natl. Acad. Sci. Lett., 44 (2021), 233–238.
    [40] M. Garcia de Lomana, A. G. Weber, B. Birk, R. Landsiedel, J. Achenbach, K. J. Schleifer, et al., In silico models to predict the perturbation of molecular initiating events related to thyroid hormone homeostasis, Chem. Res. Toxicol., 34 (2020), 396–411.
    [41] K. Shankar, S. K. Lakshmanaprabu, D. Gupta, A. Maseleno, V. H. C. De Albuquerque, Optimal feature-based multi-kernel SVM approach for thyroid disease classification, J. Supercomput., 76 (2020), 1128–1143.
    [42] H. Abbad Ur Rehman, C. Y. Lin, Z. Mushtaq, S. F. Su, Performance analysis of machine learning algorithms for thyroid disease, Arab. J. Sci. Eng., 1–13, 2021.
    [43] R. Das, S. Saraswat, D. Chandel, S. Karan, J. S. Kirar, An AI Driven Approach for Multiclass Hypothyroidism Classification, In: Advanced Network Technologies and Intelligent Computing: First International Conference, ANTIC 2021, Varanasi, India, December 17–18, 2021, Proceedings, pp. 319–327, Springer, 2022.
    [44] M. Hosseinzadeh, O. H. Ahmed, M. Y. Ghafour, F. Safara, H. K. Hama, S. Ali, et al., A multiple multilayer perceptron neural network with an adaptive learning algorithm for thyroid disease diagnosis in the internet of medical things, J. Supercomput., 77 (2021), 3616–3637.
    [45] M. Riajuliislam, K. Z. Rahim, A. Mahmud, Prediction of Thyroid Disease (Hypothyroid) in Early Stage Using Feature Selection and Classification Techniques, In: 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), pp. 60–64, IEEE, 2021.
    [46] R. Jha, V. Bhattacharjee, A. Mustafi, Increasing the prediction accuracy for thyroid disease: A step towards better health for society, Wireless Pers. Commun., 122 (2022), 1921–1938. https://doi.org/10.1155/2022/9809932 doi: 10.1155/2022/9809932
    [47] T. Alyas, M. Hamid, K. Alissa, T. Faiz, N. Tabassum, A. Ahmad, Empirical method for thyroid disease classification using a machine learning approach, BioMed Res. Int., 22 (2022).
    [48] S. Sankar, A. Potti, G. N. Chandrika, S. Ramasubbareddy, Thyroid disease prediction using XGBoost algorithms, J. Mob. Multimed, 18 (2022), 1–18.
    [49] I. Ali, Z. Mushtaq, S. Arif, A. Algarni, N. Soliman, W. El-Shafai, Hyperspectral images-based crop classification scheme for agricultural remote sensing, Comput. Syst. Sci. Eng., 46 (2023), 303–319.
    [50] S. Arif, S. Munawar, H. Ali, Driving drowsiness detection using spectral signatures of EEG-based neurophysiology, Front. Physiol., 14 (2023), 1153268.
    [51] S. Arif, M. Arif, S. Munawar, Y. Ayaz, M. J. Khan, N. Naseer, EEG spectral comparison between occipital and prefrontal cortices for early detection of driver drowsiness, In: 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), pp. 1–6, IEEE, 2021.
    [52] S. Arif, M. J. Khan, N. Naseer, K. S. Hong, H. Sajid, Y. Ayaz, Vector phase analysis approach for sleep stage classification: A functional near-infrared spectroscopy-based passive brain–computer interface, Front. Hum. Neurosci., 15 (2021), 658444.
    [53] T. Akhtar, S. Arif, Z. Mushtaq, S. O. Gilani, M. Jamil, Y. Ayaz, et al., Ensemble-based effective diagnosis of thyroid disorder with various feature selection techniques, In: 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), pp. 14–19, IEEE, 2022.
    [54] K. Chandel, V. Kunwar, S. Sabitha, T. Choudhury, S. Mukherjee, A comparative study on thyroid disease detection using K-nearest neighbor and Naive Bayes classification techniques, CSI Transactions ICT, 4 (2016), 313–319. https://doi.org/10.1111/twec.13285 doi: 10.1111/twec.13285
    [55] R. Pal, T. Anand, S. K. Dubey, Evaluation and performance analysis of classification techniques for thyroid detection, Int. J. Bus. Inf. Syst., 28 (2018), 163–177.
    [56] M. Saktheeswari, T. Balasubramanian, Multi-layer tree liquid state machine recurrent auto encoder for thyroid detection, Multimed. Tools Appl., 80 (2021), 17773–17783. https://doi.org/10.1007/s11042-020-10243-7 doi: 10.1007/s11042-020-10243-7
    [57] A. Tyagi, R. Mehra, A. Saxena, Interactive Thyroid Disease Prediction System Using Machine Learning Technique, In: 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), (Solan Himachal Pradesh, India), pp. 689–693, IEEE, Dec. 2018.
    [58] S. Mishra, Y. Tadesse, A. Dash, L. Jena, P. Ranjan, Thyroid Disorder Analysis Using Random Forest Classifier, In: Intelligent and Cloud Computing (D. Mishra, R. Buyya, P. Mohapatra, and S. Patnaik, eds.), Smart Innovation, Systems and Technologies, (Singapore), pp. 385–390, Springer, 2021.
    [59] K. Guleria, S. Sharma, S. Kumar, S. Tiwari, Early prediction of hypothyroidism and multiclass classification using predictive machine learning and deep learning, Measurement: Sensors, 24 (2022), 100482. https://doi.org/10.1016/j.measen.2022.100482 doi: 10.1016/j.measen.2022.100482
    [60] H. Zhang, C. Li, D. Li, Y. Zhang, W. Peng, Fault detection and diagnosis of the air handling unit via an enhanced kernel slow feature analysis approach considering the time-wise and batch-wise dynamics, Energ. Buildings, 253 (2021), 111467. https://doi.org/10.1016/j.enbuild.2021.111467 doi: 10.1016/j.enbuild.2021.111467
    [61] H. Zhang, W. Yang, W. Yi, J. B. Lim, Z. An, C. Li, Imbalanced data based fault diagnosis of the chiller via integrating a new resampling technique with an improved ensemble extreme learning machine, J. Build. Eng., 70 (2023), 106338. https://doi.org/10.1016/j.jobe.2023.106338 doi: 10.1016/j.jobe.2023.106338
    [62] H. Zhang, C. Li, Q. Wei, Y. Zhang, Fault detection and diagnosis of the air handling unit via combining the feature sparse representation based dynamic SFA and the LSTM network, Energ. Buildings, 269 (2022), 112241.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(904) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog