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Abstract: There are millions of people suffering from thyroid disease all over the world. For thyroid
cancer to be effectively treated and managed, a correct diagnosis is necessary. In this article, we
suggest an innovative approach for diagnosing thyroid disease that combines an adaptive synthetic
sampling method with weighted average voting (WAV) ensemble of two distinct super learners (SLs).
Resampling techniques are used in the suggested methodology to correct the class imbalance in the
datasets and a group of two SLs made up of various base estimators and meta-estimators is used to
increase the accuracy of thyroid cancer identification. To assess the effectiveness of our suggested
methodology, we used two publicly accessible datasets: the KEEL thyroid illness (Dataset1) and
the hypothyroid dataset (Dataset2) from the UCI repository. The findings of using the adaptive
synthetic (ADASYN) sampling technique in both datasets revealed considerable gains in accuracy,
precision, recall and F1-score. The WAV ensemble of the two distinct SLs that were deployed
exhibited improved performance when compared to prior existing studies on identical datasets and
produced higher prediction accuracy than any individual model alone. The suggested methodology
has the potential to increase the accuracy of thyroid cancer categorization and could assist with patient
diagnosis and treatment. The WAV ensemble strategy computational complexity and the ideal choice
of base estimators in SLs continue to be constraints of this study that call for further investigation.
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1. Introduction

Thyroid cancer is one of the most common endocrine malignancies, accounting for approximately
3.4% of all new cancer cases globally [1,2]. It is estimated that there were 567,233 new cases of thyroid
cancer and 41,071 deaths from the disease in 2020 alone [3]. Thyroid cancer is particularly prevalent in
women, with a female-to-male incidence ratio of 3:1 [4]. Figure 1 shows the hypothyroid infection in
various countries as percentage of the population. Risk factors for developing thyroid cancer include
exposure to ionizing radiation, family history of thyroid cancer and certain genetic mutations [5].
This growing incidence has been contributed to numerous aspects, such as increased exposure to
ionizing radiation, environmental pollutant and improved diagnostic techniques such as high-resolution
ultrasound and fine-needle aspiration biopsy [6, 7]. Thyroid gland has two hormones, thyroxine (T4)
and triiodothyronine (T3) and dysregulation of thyroid hormones can result in several pathological
conditions, including hypothyroidism, hyperthyroidism and thyroid cancer [8]. Noninvasive technique
such as ultrasound computed tomography (CT) scans and an invasive technique such as fine-
needle aspiration biopsy (FNAB) are used for detection of thyroid cancer [9–11]. Ultrasound can
distinguish between solid and cystic nodules and can also identify cancers, such as irregular borders,
microcalcifications and increased vascularity of thyroid cells. If an ultrasound reveals a suspicious
nodule, an FNAB may be performed to obtain a tissue sample for microscopic examination. Early
diagnosis is very important for improving the prognosis and reducing the mortality rates associated
with this malignancy. Recent advances in machine learning (ML) techniques have the potential to
significantly improve the accuracy and efficiency of thyroid cancer classification, aiding clinicians in
making better-informed treatment decisions.

Figure 1. Presence of hypothyroid infection in various countries in the percentage.

Machine learning techniques have demonstrated their utility in various aspects of cancer research
and clinical practice, such as disease diagnosis, prognosis and treatment selection [12]. In the context
of thyroid cancer, ML algorithms have been employed to analyze a variety of data types, including
imaging data, genomic data and clinical data, to provide valuable insights into the classification and
prediction of the disease [13–17]. For instance, ML techniques have shown promising results in the
classification of thyroid nodules using ultrasound images [18, 19], prediction of aggressive tumor
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features based on clinical and histopathological data [20, 21] and molecular classification of thyroid
cancer subtypes using genomic data [22, 23]. The integration of ML techniques into thyroid cancer
diagnostics and treatment decision-making has the potential to enhance patient care by improving
the accuracy of diagnoses, reducing unnecessary interventions and facilitating personalized treatment
planning. However, despite these promising advancements, challenges remain in terms of data quality,
model interpretability and clinical implementation, warranting further research and development in this
area.

After the pre-processing part, handling the class imbalance issue effectively for both datasets is a
top concern. In machine learning, imbalanced datasets occur frequently when there are significantly
less examples in one class than in another. This can have a negative impact on the accuracy of machine
learning models, which is especially problematic for marginalized groups. The two datasets have been
used in this research work. The first dataset comprises the three classes in the target variable, with the
representation of normal, hypo and hyperthyroidism. The total instances for each target class are, for
normal total of 166, hypothyroidism consists of 6666 samples and hypothyroidism includes only 368
samples. Similarly, the second dataset includes two classes, 3,481 samples labelled as P and 291 as N
updated as suggested. It is clearly shown that both datasets include imbalance classes that can directly
affect the performance and accuracy of the proposed model, due to the limited number of training
samples for the specific target variable. Therefore, in this study, we implemented adaptive synthetic
(ADASYN) sampling to resample the minority class target variables. Table 2 includes a detailed
discussion about the total number of samples for the original and ADASYN-generated datasets.

The last part of this research study focused on the implementation of the ensembling technique
for the two implemented super learners. Although super learning itself is an ensembling technique
where multiple base meta estimators have been used to combine the predictions of the models. Super
learners are a sort of ensemble learning in which the predictions of numerous models are combined
to improve overall performance. Cross-validation is used by the super learner method to estimate
the performance of many machine learning models. By lowering bias and variance and eliminating
parametric assumptions, the super learner method can increase the accuracy of machine learning
models. It can also assist to avoid overfitting and increase model generalization. In this study, two
super learners were implemented that again undergoes the voting ensemble, to consecutively improve
the accuracy and performance of the proposed approach on both datasets.

The main contributions of this work are below:

• Novel ensemble modeling approach utilizing two super learners, each containing three distinct
classifiers, to boost classification performance and reduce model variance.
• Various preprocessing and feature selection techniques employed, including feature importance

techniques, dimensionality reduction methods, class imbalance handling, outlier detection and
feature standardization, to streamline the datasets and identify the most relevant features for
thyroid disease classification.
• Class imbalance issues were addressed using the adaptive synthetic (ADASYN) sampling

technique, oversampling the minority class to ensure equal representation of all classes.

The paper is structured into several sections, starting with a review of the relevant literature and prior
research on thyroid disease classification in Section 2. Section 3 describes the methodology employed
in this study, including data acquisition, preprocessing, feature importance, outlier detection, class
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imbalance handling and ensemble modeling. Section 4 presents the findings of the study, including
a comparison with existing works. Section 5 provides an interpretation and analysis of the results.
Finally, Section 6 summarizes the study’s main contributions, limitations and potential for future
research.

2. Related works

Several studies have used ML techniques such as support vector machines (SVM), artificial neural
networks (ANN) and deep learning algorithms such as convolutional neural networks (CNNs) for
detection and classification of thyroid cancer. One area where ML has shown promise is in the
diagnosis of thyroid nodules, which is crucial for accurate and timely treatment planning. The study
[24] proposed a deep learning technique that is based on a deep convolutional neural network (CNN)
to distinguish between benign and malignant thyroid nodules using ultrasound images. The dataset
consisted of 1,000 ultrasound images of thyroid nodules, which were divided into training, validation
and testing sets. The CNN model achieved an accuracy of 87.6% on the testing set and demonstrated
high sensitivity in detecting malignant nodules. Another study [25], employed a machine learning
approach to predict the presence of the BRAF mutation in cancerous thyroid nodules. The researchers
used 96 ultrasonic images of thyroid nodules and extracted 86 radiomic features. They utilized three
different models, namely linear regression (LR), support vector machine (SVM) and random forrest
(RF), to predict the likelihood of the BRAF mutation being present. Another study [26] proposed
a thyroid nodule classification system based on feature fusion and deep learning techniques. The
dataset consisted of 5,310 ultrasound images of thyroid nodules and the proposed system achieved
high accuracy (95.2%), sensitivity (93.1%) and specificity (96.8%) using a combination of CNN
and LSTM networks. In the research conducted in [27], Chen et al. utilized the LASSO technique
along with a LR model to pick out the ultrasonic characteristics associated with malignant thyroid
nodules. Subsequently, they employed RF to categorize the malignant thyroid nodules. By using LLR
in conjunction with RF, they achieved the highest level of accuracy, which was 82%.

ML has also been applied to predict the risk of malignancy in thyroid nodules using radiomics
features extracted from CT images. ML has also been applied to prognostic modeling in thyroid
cancer, which is essential for personalized treatment planning and improved patient outcomes. The
study described in [28] used two machine learning techniques, namely SVM and RF, to detect
thyroid disorders using the thyroid dataset provided. The SVM model achieved 91% accuracy, while
the RF model achieved 89%. In the study done in [29], the research aimed to forecast thyroid
disease, categorizing it into two types: hypothyroid and euthyroid. The assessment criteria adopted
in the research encompassed accuracy, precision, recall, F1-score, ROC-AUC, confusion matrix and
classification. The random forest classifier stood out as the most effective approach, achieving a
success rate of 99.5%. The study emphasized the capacity of machine learning algorithms in detecting
and diagnosing thyroid disease in its initial stages. In another work [30], The model employed in
the study was an in symbol of homogenous ensembles that combined multiple attributes selection
approaches. The findings of the study demonstrated that the proposed method achieved impressive
accuracy of 99.6% with surpassed the other state of the art approaches. The algorithm emerged as
the best technique used in the study. Another study [31] proposed an artificial neural network (ANN)
model to differentiate between benign and malignant nodules and improve the accuracy of objective
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diagnosis based on ultrasound (US) images. The ANN accurately predicted 82.3% of thyroid cancer
cases with an AUC value of 0.818 and an accuracy rate of 84.5%.

In another study [32], it was observed that SVM was more effective than RF in identifying thyroid
conditions. The study employed ML classifiers to predict the presence of thyroid disorders. To
enable algorithms to identify the likelihood of patients developing a particular disease, data preparation
techniques were implemented to simplify the data. Disease prediction using machine learning is a
common practice and several methods are employed by scientists, such as SVM, DT, LR, ANN and
KNN, to predict the likelihood of a patient acquiring thyroid disease. In this study [33], clinical datasets
were employed to evaluate and compare the performance of three classifiers: SVM, NB and DT. SVM
is widely utilized in machine learning. The study [34] categorized thyroid disease into three groups
based on data i.e. overactive thyroid and hypothyroidism. The study implemented several classification
methods, including SVM, DT, RF, NB, LR, KNN, LDA and MLP. The most accurate classifiers was
RF, achieving 89% accuracy.

In another study [35], researchers employed three ML techniques ANN, RF and SVM to identify
thyroid texture. The researchers created 30 attributes based on spectral energy using autoregressive
modeling for a 2D thyroid ultrasound image variation to train the classifiers. The characteristics of
thyroid tissues were illustrated using image-based features instead of text-based descriptors. When
the three techniques were combined, the accuracy rate was around 90%. In [36], the authors used
data mining techniques using python to create algorithms for identifying thyroid illness types. It has
enabled cost effective thyroid diagnostic reports to be available to patients. Two well-known systematic
attribute selection techniques, namely sequential forward and sequential backward selection, were
utilized. The evolutionary method was used as a popular strategy for picking features in nonlinear
optimization problems. The SVM was employed to detect hypothyroidism.

In a cross-sectional study [37], a classification algorithm was developed by integrating SVM,
MLP, CHAID and iterative dichotomiser-3. To address dataset imbalance issues, classification
methods, bootstrap aggregating (Bagging) and boosting procedures were utilized, which improved
the classification outcomes. The study revealed that SVM bagging produced 100% precision and
specificity, 73.33% recall and 84.62% F-measure. In a different study [38], the attribute partitioning
criteria for detecting thyroid disease were determined using DT. The authors aimed for an accuracy
rate of 99.89% and compared the diagnostic results using DT, SVM and NB methodologies. In another
study [39], DT, KNN and SVM were used to evaluate the risk of thyroid illness based on a patient’s
medical history using various ML methods for disease-prevention diagnostics.

Table 1 compares existing studies on thyroid disease detection using various datasets for evaluation.
For our study, we chose a well-known UCI dataset. While previous studies achieved high accuracy in
detecting and classifying thyroid disease, there has been limited research on feature selection for this
classification problem. Prior studies on thyroid problems categorize them into three classes: normal,
hypothyroidism, or hyperthyroidism. However, for proactive prediction and treatment, categorizing
patients based on their treatment and general health condition would be more effective. Furthermore,
there has been limited discussion on evaluating and comparing the performance of machine learning
and deep learning-based techniques for thyroid disease classification. To address these limitations,
we propose a multiclass solution for thyroid disease classification that utilizes feature selection and
provides a comprehensive performance comparison of machine learning and deep learning-based
approaches.

AIMS Mathematics Volume 8, Issue 10, 24274–24309.



24279

Table 1. An overview of the related research on thyroid disease.

Refs Year Sample Size Dataset Model Classes Results
[40] 2020 - ToxCast LR, RF, SVM,

XGB, ANN
2 83.00%

[41] 2020 7547 UCI SVM 3 97.49%
[42] 2021 299 UCI DT, RF, KNN,

SVM, ANN
2 98.50%

[43] 2021 3771 UCI DT, KNN, RF,
ANN

4 96.10% - 98.30%

[44] 2021 7200 UCI MLP 3 99.00%
[45] 2021 519 DDB SVM, DT, RF,

LR and NB
4 99.35%

[28] 2021 - UCI SVM and RF 3 96.80% - 97.30%
[34] 2021 1250 - SVM, DT, NB,

LR, KNN, MLP
3 83.20% - 96.40%

[30] 2022 7200 KEEL & UCI RF, BME, XGB,
AB

3 92.44% - 99.27%

[30] 2021 3010 Kaggle Ensemble 2 99.60%
[29] 2021 690 KEEL & DHTH KNN 3 98%
[46] 2022 3152 UCI DNN 2 99.95%
[47] 2022 3163 UCI DT, RF, KNN and

ANN
2 94.80%

[48] 2022 215 UCI KNN, XGB, LR,
DT

3 81.25% - 87.50%

3. Materials and methods

The methodology employed in this study is depicted in Figure 2 and comprises the following steps:
data acquisition, preprocessing, feature importance, class imbalance handling, outlier detection, feature
standardization, ensemble modeling and performance evaluation. Two datasets were used for analysis:
the KEEL thyroid disease dataset and the hypothyroid dataset from the UCI repository. During
the preprocessing phase, various data exploration techniques were applied to gain insights into the
datasets. Feature importance techniques were employed to identify the most relevant features for
thyroid disease classification. To explore the selected features and their relationships, dimensionality
reduction techniques like principal component analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE) were employed.

The class imbalance issue was addressed using the adaptive synthetic (ADASYN) sampling
technique, which oversampled the minority class to ensure equal representation of all classes.
Subsequently, outlier detection techniques were applied to identify and remove anomalous observations
from the selected features. The features were then standardized to ensure consistent scaling across all
variables. The methodology employed in this study involved the development of an ensemble model
composed of two super learners, with each super learner containing three distinct classifiers. This
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ensemble model aimed to boost the classification performance by leveraging the strengths of multiple
classifiers and reducing the overall model variance. The ensemble model was evaluated using a range
of performance metrics, such as accuracy, specificity, sensitivity and F1-score, to thoroughly assess its
effectiveness in classifying thyroid diseases.

Figure 2. General block diagram of the proposed methodology.

3.1. Dataset description

Two datasets were employed in this work to enhance the analysis and thyroid disease classification.
The first dataset, the KEEL thyroid disease dataset, offers a comprehensive collection of attributes
related to thyroid function tests, patient demographics and clinical data. The second dataset, the
Hypothyroid dataset from the UCI repository, complements the KEEL dataset by providing additional
instances and features pertinent to hypothyroidism, a common type of thyroid disorder. By utilizing
both datasets, the analysis benefits from a diverse and extensive set of instances that cover a broader
spectrum of thyroid disease cases. This comprehensive dataset allows for a more accurate evaluation
of the classification models and ensures a robust analysis of the factors influencing thyroid disease
classification. The details of each dataset are given as follows:

3.1.1. Dataset 1: KEEL Dataset

The KEEL thyroid disease dataset provides a comprehensive collection of data related to thyroid
conditions, enabling us to develop and evaluate machine learning models for diagnosing and predicting
thyroid disorders. The dataset combines demographic information (age, sex), medical history
(on thyroxine, on antithyroid medication, thyroid surgery, I131 treatment) and various thyroid-related
conditions and treatments (query on thyroxine, query hypothyroid, query hyperthyroid, lithium,
goitre, tumor, hypopituitary, psych) as attributes. It includes essential thyroid hormone levels (TSH,
T3, TT4, T4U, FTI), providing valuable insights into the patient’ thyroid function. The three classes
in the dataset represent distinct thyroid disease categories, enabling researchers to develop multi-class
classification models for disease detection and prognosis.
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3.1.2. Dataset 2: Hypothyroid Dataset

The second dataset under consideration consists of 30 attributes for 3,772 patients, with 29 variables
being categorical and one being an integer value. Dataset-1 has a significant amount of missing data.
Among the 30 attributes, eight crucial features contain missing data. These features are TT4, FTI,
T4U, age, sex, TSH, T3 and TBG, with 231, 385, 387, 1, 150, 369 and 769 missing samples out of the
total 3,772 instances, respectively. The TB feature is entirely comprised of missing values. The target
class distribution, represented as a binary class, includes 3,481 samples labeled as P and 291 as N.

3.2. Data preprocessing

In the initial stage of preprocessing, the datasets are thoroughly examined for potential errors and
inconsistencies, such as incorrect formatting, duplicate entries and invalid values. These issues are
rectified through a meticulous data cleaning process, ensuring the integrity of the data. Subsequently,
the datasets are scrutinized for missing values, which are imputed using a variety of techniques,
encompassing mean, median, mode and k-nearest neighbor’ imputation methods.

In the succeeding step, features that has no significant contribution to the model are identified and
eliminated from the datasets. Such features may encompass irrelevant or redundant data or data that
exhibits high correlation with other features. This step aids in streamlining the datasets and mitigating
noise, which ultimately enhances the model’s accuracy and reliability.

Following this, redundant values are identified and removed from the datasets. This process entails
detecting and eliminating duplicate data present across the datasets, as well as any additional redundant
information that may exist. By eradicating redundant values, the datasets are further simplified, which
bolsters the efficiency and accuracy of the machine learning model applied in the study.

3.3. LASSO model-based attribute importance

In conjunction with the pre-processing steps detailed earlier, this study also utilized a least
absolute shrinkage and selection operator (LASSO) model-based attribute importance technique to
identify significant features from the preprocessed data. The LASSO model, a well-established linear
regression model, is frequently employed in machine learning for the purpose of feature selection. The
model is advantageous as it not only minimizes the residual sum of squares but also constrains the sum
of the absolute values of the coefficients. This constraint leads to the shrinkage of some coefficient
estimates to zero, effectively excluding them from the model and resulting in a more parsimonious and
interpretable model.

The LASSO model can be represented mathematically as follows:

y = β0 + β1x1 + β2x2 + + βpxp + ϵ (3.1)

where y is the dependent variable, x1, x2, , xp are the independent variables, β0, β1, β2, , βp are the
regression coefficients and ϵ is the error term.

The LASSO model objectively try to minimize the following equation:

1
2n

(||y − Xβ||)2 + λ||β||1 (3.2)
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where (||y − Xβ||)2 is the residual sum of squares, λ is the penalty parameter and ||β||1 is the L1 norm of
the coefficients.

The coefficient estimates can be obtained by solving the following equation:

β̂ = arg min
1

2n
(||y − Xβ||)2 + λ||β||1 (3.3)

where β̂ is the coefficient estimates and X is the preprocessed data.

Once the LASSO model was trained on the preprocessed data, we extracted the non-zero coefficients
as the most important features for predicting the target variable. These important features were then
used as input for the final machine learning model, which was trained and evaluated using standard
techniques such as cross-validation and hyperparameter tuning. Figures 3 and 4 illustrate the important
features of the first dataset and second dataset using LASSO model, respectively.

Figure 3. LASSO model feature importance from the first dataset.
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Figure 4. LASSO model feature importance from second dataset.

3.4. Data visualization

Upon determining the most significant features from the preprocessed data using the Lasso model-
based attribute importance technique, the subsequent step involves visualizing the data in a manner that
emphasizes its inherent structure. In this research, we employed both principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-SNE) to investigate the chosen features and
discern any patterns or clusters present within the data.

3.4.1. Principal component analysis

Principal component analysis (PCA) is a widely employed dimensionality reduction technique
utilized in various fields like image processing, finance and genetics [49]. The method is a
mathematical algorithm that endeavors to decrease the number of features within a dataset while
preserving the most essential information. PCA does this by transforming the dataset into a new
coordinate system that is aligned with the principal components of the original data, where each
principal component constitutes a linear combination of the original features. The objective of PCA is
to maximize the variance of the data along each principal component, thereby ensuring that the most
significant information in the data is retained. PCA is particularly useful for visualizing data in two or
three dimensions, but it can also be applied to higher dimensional data.

Given a dataset X, which contains n observations and p features, the first step of PCA is to
calculate the covariance matrix C. The covariance matrix describes the relationship between the
different features of the dataset. Specifically, it measures how much two features vary together.
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The diagonal elements of the covariance matrix represent the variance of each feature, while the off-
diagonal elements represent the covariance between the features.

Next, PCA computes the eigenvectors v1, v2, , vp and the corresponding eigenvalues λ1, λ2, , λp of the
covariance matrix C of X. The eigenvectors v1, v2, , vp form an orthonormal basis for the p-dimensional
space and can be used to project the data onto a new coordinate system that captures the maximum
amount of variance in the data.

The eigenvectors are the directions in which the data varies the most and the corresponding
eigenvalues indicate the amount of variance in the data along these directions. The eigenvectors
and eigenvalues are sorted in descending order of the eigenvalues and only the top k eigenvectors
are retained. These eigenvectors form an orthonormal basis for the p-dimensional space. PCA then
projects the data onto a new coordinate system that captures the maximum amount of variance in the
data. The projection of X onto the k-dimensional subspace spanned by the first k eigenvectors is given
by the matrix multiplication:

Z = X × Vk (3.4)

where Vk is the matrix consisting of the first k eigenvectors of C. The projected data Z has dimensions
n × k, where k is the number of retained eigenvectors. The resulting projected data Z can be used
for further analysis or visualization. PCA is particularly useful when dealing with high-dimensional
datasets, as it can significantly reduce the number of features while retaining the most important
information. PCA is also used for feature extraction, anomaly detection and clustering. Figure 5
(a) presents the projection of PCA of first dataset, while Figure 5 (b) presents the PCA projection of
second dataset before resampling.

(a) (b)

Figure 5. Visualization of attributes in original datasets using PCA (before resampling): (a)
first dataset; (b) second dataset.

3.4.2. t-Distributed stochastic neighbor embedding

t-Distributed stochastic neighbor embedding (t-SNE) is a commonly utilized technique for nonlinear
dimensionality reduction which enables the representation of high-dimensional data in a lower-
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dimensional space in a visual format.. Given a dataset X, which contains n observations and p features,
t-SNE constructs a lower-dimensional map Y where the distances between points reflect the similarities
in their probabilities.

The first step of t-SNE is to model the high-dimensional data as a set of probabilities. Specifically,
it constructs a probability distribution P over pairs of high-dimensional data points such that similar
points have a higher probability of being chosen than dissimilar points. It then constructs a probability
distribution Q over pairs of low-dimensional data points that aims to preserve the similarity structure
of the high-dimensional data. The algorithm works by minimizing the Kullback-Leibler divergence
between the joint probabilities P and the conditional probabilities Q.

The cost function to be minimized is given by C = KL(P||Q), where KL is the Kullback-Leibler
divergence. This cost function measures the difference between the probability distributions P and Q.
The cost function to be minimized is given by:

C = KL(P||Q) =
∑

i

∑
j

Pi j log
(

Pi j

Qi j

)
(3.5)

The probability Pi j that point i would choose point j as its neighbour in the high-dimensional space
is computed using a Gaussian kernel:

Pi j =

exp
−||xi − x j||

2

2σ2
i


∑

k,l exp
(
−||xk − xl||

2

2σ2
k

) (3.6)

where xi and x j are the feature vectors of points i and j in the high-dimensional space and ||xi − x j||

is the Euclidean distance between them. The parameter σi is the standard deviation of the Gaussian
kernel for point i and is computed as the distance to its kth nearest neighbor. This parameter is chosen
to reflect the density of the data around each point, which helps to balance the probabilities for points
in dense and sparse regions of the data.

To compute the probability Qi j that point i would choose point j as its neighbor in the low-
dimensional space, t-SNE uses the students t-distribution. Specifically, it defines Qi j as:

Qi j =

(
1 + ||yi − y j||

2
)−1

∑
k,i

(
1 + ||yi − yk||

2
)−1 (3.7)

where yi and y j are the coordinates of points i and j in the low-dimensional space and ||yi − y j|| is the
Euclidean distance between them. To normalize the probabilities, the parameter in the denominator
represents the summation over all other points in the low-dimensional space.

By employing gradient descent, t-SNE reduces the cost function with respect to the coordinates
of the points in the low-dimensional space, yi. This is accomplished by continuously updating the
coordinates of the points until the cost function reaches a minimum. The algorithm is recognized for
its capacity to preserve the local structure of data, which renders it highly advantageous for visualizing
intricate datasets like images and text. Figure 6 shows the t-SNE projections of first and second dataset,
respectively.

AIMS Mathematics Volume 8, Issue 10, 24274–24309.



24286

(a) (b)

Figure 6. Visualization of attributes in original datasets using t-SNE (before resampling):
(a) first dataset, (b) second dataset.

3.5. Adaptive sampling

The issue of class imbalance in machine learning has long been recognized as a significant
challenge, as it can introduce bias in favor of one class while under-representing another. To address
this challenge, a range of sampling techniques have been developed over time, including synthetic
over-sampling, which involves generating artificial data points to represent the minority class.

Among the various synthetic sampling methods, ADAptive SYNthetic (ADASYN) sampling has
emerged as particularly effective, owing to its non-linear interpolation scheme. This approach
introduces non-linearity to the sampled dataset by generating synthetic examples that lie between
existing minority examples and their k-nearest neighbors from the majority class. These synthetic
samples are then generated in accordance with the density distribution of the minority class in the
feature space, which captures the underlying non-linear relationship between the minority and majority
classes.

As a result, ADASYN generates minority samples that are uniquely representative of the minority
group, introducing new patterns and variations within the dataset. This, in turn, can enhance the ability
of machine learning models to capture the non-linear relationships between the feature and target
variables.

Let X be a dataset with N samples and M features. Let C1 be the majority class and C2 be the
minority class, where C1 < C2. To reduce the class imbalance, we use ADASYN sampling to obtain
C1 = C2 × β, where β ∈ [0, 1] is the desired sampling level.

To apply ADASYN sampling, we first calculate the density distribution of minority class samples.
For each minority sample xi in class C2, the density distribution D(xi) is calculated as:

D(xi) =
N∑

j=1

w j(xi) ×
1

dist(xi, x j)p (3.8)

where D(xi) is the density distribution of the ith minority sample dist(xi, x j) is the Euclidean distance
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between the ith and jth nearest neighbor samples from both classes C1 and C2 and p is the decay
parameter that controls the rate of decay of contribution of distant samples to the density distribution.
The weight w j(xi) is a function that assigns a weight to each sample based on its similarity to xi:

w j(xi) = exp
(
−d j(xi)2

2 ∗ σ2

)
(3.9)

where d j(xi) is the Euclidean distance between xi and x j and σ is a bandwidth parameter.
The class imbalance ratio Ir is determined by calculating the ratio between the number of majority

class samples S M and the number of minority class samples S m:

Ir =
S M

S m
(3.10)

To determine the number of synthetic samples to generate for each minority sample xi, we use the
following equation:

G(xi) = round(D(xi) × Ir × (1 − α)) (3.11)

where G(xi) is the generated synthetic sample for the ith minority sample, α is a hyperparameter that
controls the degree of randomness in the sampling process.

Finally, the synthetic samples are generated in a series of iterations. For each minority sample xi,
we select ki nearest neighbors from both classes C1 and C2, where ki is a hyperparameter. We then use
the following mathematical equation to generate the ki synthetic samples:

S S k = xi + αk × (xr − xi) + βk × (x j − xi) (3.12)

where S S k is the kth synthetic sample generated for the ith minority sample, αk and βk are random
numbers between 0 and 1, xr is a randomly chosen minority sample and x j is a randomly chosen
sample from the ki nearest neighbors.

The values of αk and βk are determined using the following relations:

αk = (1 − δ) ∗ r1 +
δ

2
(3.13)

βk = (1 − δ) ∗ r2 +
δ

2
(3.14)

where δ is a hyperparameter that controls the degree of randomness in the sampling process and r1

and r2 are random numbers between 0 and 1. Figure 7 shows the target variable distribution of first
dataset and second dataset after resampling using ADASYN technique with PCA while Figure 8 shows
the target variable distribution of first dataset and second dataset after resampling using ADASYN
technique with t-SNE.
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(a) (b)

Figure 7. Visualization of both datasets using PCA after ADASYN resampling: (a) first
dataset after resampling; (b) second dataset after resampling.

(a) (b)

Figure 8. Visualization of both datasets using t-SNE after ADASYN resampling: (a) first
dataset after resampling; (b) second dataset after resampling

Figure 9 illustrates the comparison of the target variable distribution between the original and
resampled datasets for the two datasets. Figure 9 (a) represents the first dataset before and after
applying ADASYN resampling and Figure 9 (b) represents the second dataset before and after applying
ADASYN resampling.
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(a) (b)

Figure 9. Comparison of target variable distribution of original and resampled datasets:
(a) first dataset before and after ADASYN resampling; (b) second dataset before and after
ADASYN resampling.

It can be observed that the distribution of both classes has become more balanced in the resampled
datasets. This indicates that the ADASYN resampling technique has successfully addressed the
class imbalance problem in both datasets, which can potentially lead to more accurate and robust
classification models.

3.6. Local Outlier Finder

The Local Outlier Factor (LOF) algorithm is a popular technique for detecting anomalies in a
dataset. In this research, we employed the LOF algorithm as part of our methodology for identifying
outliers in our dataset. To implement this algorithm, we first defined a distance metric between data
points using the commonly used Euclidean distance. We then used the algorithm to calculate the
local density of each data point by measuring the average distance between the point and its k-nearest
neighbors. To determine the value of k, we performed a sensitivity analysis and chose the value that
resulted in the best performance.

With the local density of each data point calculated, we proceeded to compute the LOF score for
each point. This score reflects the degree to which a data point deviates from its neighbors in terms
of local density. Specifically, a data point with an LOF score significantly lower than its neighbors is
considered an outlier.

Let X = x1, x2, , xn be a dataset consisting of n data points, where each data point xi belongs to a
d-dimensional feature space. We define the distance metric between two data points xi and x j as the

Euclidean distance, given by the equation dist(xi, x j) =
√

(xix j)T (xix j), where T denotes the transpose
operator.

Given a data point xi, we define its k-distance as the distance between xi and its kth-nearest neighbor,
given by the equation:

k − distance(xi) = dist(xi, xk(i)) (3.15)

where xk(i) is the kth-nearest neighbor of xi. Using the k-distance of each data point, we define the local
reachability density (LRD) of a data point xi as the inverse of the average k-distance of xi’s k-nearest
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neighbors. This is given by the equation:

LRD(xi) =
(∑

xi,x j
dist(xi, x j)

k

)−1

(3.16)

where the sum is taken over xi’s k-nearest neighbors.
Finally, we define the LOF score of a data point xi as the average ratio of the LRD of xi to the LRD

of its k-nearest neighbors, given by the equation:

LOF(xi) =

∑(
LRD(x j)
LRD(xi)

)
/k(∑

LRD(x j)
)
/k

(3.17)

where the sum is taken over xi’s k-nearest neighbors, excluding xi itself.
Table 2 shows the improvement in the number of training samples for both datasets before and after

applying ADASYN and outlier removal. Dataset 1 had 5,760 samples in the original dataset, which
increased to 14,410 after applying ADASYN, and reduced to 12,969 after outlier removal. Similarly,
Dataset 2 had 3,017 samples in the original dataset, which increased to 5,592 after applying ADASYN
and then reduced to 5,032 after outlier removal. The number of samples increased significantly after
applying ADASYN, which helps to balance the class distribution in both datasets.

Table 2. Improvement of number of training samples in both dataset; before and after
utilization of ADASYN and outlier removal.

Total
number of
samples
in original
dataset

Outlier
detection

After
outlier
removals

Total
training
samples
after
ADASYN

Outlier
detection
after
ADASYN

Total
number
of samples
after outlier
removal

Dataset 1 5760 576 5184 14410 1441 12969
Dataset 2 3017 302 2715 5592 560 5032

3.7. Classification models

In this research study, we utilized two iterations of the super learner (SL) ensemble technique as our
primary methodology to predict outcomes in our dataset. The SL ensemble technique is an effective
method for combining multiple machine learning models to achieve higher prediction accuracy.

In our study, we employed two SL ensembles that consisted of three base estimators each. The
first SL ensemble comprised of logistic regression, decision trees and support vector classification. We
selected these estimators based on their individual strengths and potential synergies when combined.
To combine the predictions of the base estimators, we utilized a random forest as the meta estimator
known for its ability to reduce overfitting and improve prediction accuracy. Similarly, for the second
SL ensemble, we selected random forest, adaBoost and bagging Classifier as base estimators based
on their respective strengths in handling large datasets, improving weak learners’ performance and
reducing overfitting. In this study, a decision tree was employed as the meta estimator to integrate the
predictions of individual models. This was achieved by recursively partitioning the dataset into smaller
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subsets based on input features, until a stopping criterion was reached. The decision tree algorithm then
predicted the output variable based on the most prevalent class within each subset and these predictions
were used to generate the final prediction. Figure 10 shows the overall overview of implemented model
in this study.

By utilizing two iterations of the SL ensemble technique with different combinations of base
estimators and meta estimators, we were able to achieve higher prediction accuracy than any individual
model could achieve alone. After applying SL 1 and SL 2 ensemble techniques to our dataset, we
wanted to further improve the accuracy of our predictions. Therefore, we decided to use a weighted
average voting technique as our final step.

After calculating the performance metrics for each model, we assigned weights to each model based
on their performance. We assigned higher weights to the models with better performance and lower
weights to those with weaker performance. The weights were assigned in such a way that the total sum
of weights was equal to one. After assigning the appropriate weights to each model, we combined their
predictions by calculating a weighted average of their outputs. To obtain the final prediction, we took
a weighted average of the predicted probabilities for each potential outcome. This approach allowed
us to derive a more accurate prediction by taking into account the strengths and weaknesses of each
individual model.

To gauge the effectiveness of the weighted average voting technique, we compared its performance
to that of the individual models and super learner ensembles. We utilized several performance metrics,
including accuracy, precision, recall and F1-score, to evaluate the effectiveness of the weighted average
voting technique. Further details on the classifiers utilized in this study are provided in the subsequent
subsections.

3.7.1. Classifier 1: Logistic regression

Logistic regression is a popular and powerful algorithm for supervised machine learning that can be
used for binary classification tasks [40]. The goal of logistic regression is to estimate the probability of
a binary outcome based on one or more input features [34]. The input features are combined with a set
of weights and an intercept term to produce a linear combination of the inputs. This linear combination
is then passed through a sigmoid function to obtain the predicted probability.

The logistic regression algorithm determines the weight and intercept terms that minimize the
disparity between the predicted probabilities and the factual binary outcomes within the training data.
This is accomplished by reducing a cost function utilizing an optimization algorithm like gradient
descent. The logistic regression model can be expressed as follows:

p(y = 1|x) =
1

1 + exp(−(wT x + b))
(3.18)

where (y = 1|x) is the predicted probability of y = 1 given input features x, w is the weight vector and
b is the intercept term.

To train the logistic regression model, we use a training set of input features and binary target
variables. The weights and intercept term are initialized randomly and the cost function is iteratively
minimized using an optimization algorithm such as gradient descent. The resulting model can then be
used to predict the binary outcome for new input features, as Figure 10.

AIMS Mathematics Volume 8, Issue 10, 24274–24309.



24292

Figure 10. The overview of implemented classification models in this study.

3.7.2. Classifier 2: Decision trees

The decision trees algorithm is a highly adaptable supervised machine learning model that can
accommodate both categorical and numerical data and perform both classification and regression
tasks [29]. The algorithm does this by recursively dividing the data into smaller subsets based on the
most important attributes until a stopping criterion is reached [34]. The resulting structure is a visual
representation of a decision-making process, with nodes representing decisions based on particular
attributes and branches representing the outcomes of those decisions [48]. The root node signifies the
initial decision with maximum entropy, while the leaf/terminal nodes indicate the final decisions with
zero entropy [50]. This approach has proven highly effective in a wide range of problem domains and
can offer valuable insights into complex decision-making processes.

Assuming we have a dataset D1 = {(x1, y1), (x2, y2), (xn, yn)} with input features X =

{x1, x2, x3, x4, , xn} and a target variable Y . where,

• D1 is the dataset with xi input features and yi target variables.
• xi = {xi1, xi2, xi3, ., xin} is the feature vector for ith observation.
• yi = {yi1, yi2, yi3, ., yin} is the ith target variable.

To select the root feature, we use an entropy-based impurity measure. Entropy is calculated using
the following:
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H(s) = −
∑

x

p(x) log p(x) (3.19)

where, H(s) is the entropy and p(x) is the percentage of class x in the attribute node.
The Information Gain after the split is calculated using the following:

G(S , xin) = H(s) −
∑

v∈Values(xin)

|S v|

|S |
H(sv) (3.20)

where,

• G(S , xin) is the gain of nth feature of [i]th observation,
• xin is the nth feature within the root node,
• S is the class subset of x[in] feature,
• H(s) is the entropy of the root,
• H(sv) is the entropy of the child nodes,
• sv are the samples in respective subset,
• s are the samples in the root node.

The Gain for each feature in xin is computed and the feature that maximizes the impurity reduction
is selected, i.e., G(S , xi1) > G(S , xi2). This process is iterated until a stopping criterion is met, such as
reaching the maximum depth or minimum impurity reduction threshold or having a minimum number
of observations per node.

3.7.3. Classifier 3: Support Vector Classification

Support vector classification (SVC) or support vector machines (SVM) is a popular and effective
supervised machine learning algorithm that can be used for both classification and regression tasks [34].
The goal of SVC is to find a hyperplane that best separates the input data into different classes or to
find a hyperplane that best fits the input data for regression tasks [45, 51]. The hyperplane is chosen
to maximize the margin, or the distance between the hyperplane and the closest data points from each
class [40, 41].

To train an SVC model, we first select a kernel function, denoted as K(x, x′), that maps the input
features to a higher-dimensional space, where the input data is more separable [50]. The kernel function
takes two input vectors x and x′ and outputs a scalar value that measures the similarity between them.
The most common kernel functions are linear, polynomial and radial basis function (RBF) [51]. The
choice of kernel function depends on the characteristics of the input data and the specific problem
domain [52].

The input data consists of n feature vectors xi, where i ∈ [1, n] and the corresponding binary labels
yi, where yi ∈ {−1, 1} for classification tasks and yi ∈ ℜ for regression tasks. For classification tasks,
we aim to find a hyperplane in the feature space that separates the two classes with the largest possible
margin. For regression tasks, we aim to find a hyperplane that best fits the input data with minimum
error.

The optimization problem for SVM is defined as follows:
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minimize

1
2
||w||2 +C

∑
i

ξi

 (3.21)

subject to yi(wT xi + b) ≥ 1 − ψi and ξi ≥ 0 where w is the weight vector, b is the bias term and ξi is the
slack variable that allows for misclassifications in the margin. The parameter C controls the trade-off
between maximizing the margin and minimizing the classification or regression error [52].

The solution to the optimization problem is obtained by solving its dual form, which is given by:

max
∑

i

αi −
1
2

∑
i

∑
j

αiα jyiy jK(xi, x j) (3.22)

subject to 0 ≤ αi ≤ C and
∑

i αiyi = 0 where αi is the Lagrange multiplier associated with the ith data
point and the support vectors are the data points with non-zero Lagrange multipliers. The weight vector
w and the bias term b can be computed from the support vectors and their corresponding Lagrange
multipliers.

Once the hyperplane is determined, new input data can be classified or predicted by computing its
distance from the hyperplane. For classification tasks, the predicted label is determined by the sign of
the distance.

3.7.4. Classifier 4: Random forest

The algorithm is an influential machine learning technique that finds extensive application in both
classification and regression tasks [53]. It falls within the category of ensemble learning algorithms,
which entails the combination of multiple decision trees to produce more accurate predictions [47].
One of the principal advantages of random forest is its utilization of bootstrap aggregation (also referred
to as bagging) to enhance the performance of the model by decreasing variance [50]. This is achieved
by training each decision tree on a randomly selected subset of the original data, which helps to mitigate
overfitting and enhance the generalization capability of the model.

For a given dataset X consisting of n examples, where each example has m features and Y is the
respective set of class labels, the random forest algorithm aims to learn a function f : X → Y that can
predict the class for a new input vector x.

To create a random forest classifier, we first generate a set of Di bootstrap samples of size n′ that
are uniformly and randomly selected with replacement from the original dataset X. Since observations
are selected with replacement, there may exist some duplicates within each Di. A fraction f ′′(1 − 1

e ≈

63.2%) of the unique examples may exist for n′ = n in Di, while the remaining examples are duplicates.
We can represent X as a collection of bootstrap samples, Di, where:

X = Di = {D1,D2,D3, ...,Dn} (3.23)

Di =

n∑
i=0

Di (3.24)

⊨ Di,

 f ′ = 63.2%, n′ = n

f ′′ < 63.2%, n , n
(3.25)
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For each feature F and target variable T in each sample set Di, we calculate entropy and gain to
create n = Di decision trees. The entropy of a selectable feature F and the target variable T is calculated
using:

E(T, F) =
∑
c∈F

P(c)E(c) (3.26)

where E(c) is the entropy of the respective class and P(c) is the proportion of samples belonging to the
respective class.

We can then calculate the information gain after the split using:

Gain(T, F) = E(T ) − E(T, F) (3.27)

where E(T ) is the entropy of the target variable and E(T, F) is the entropy of the target and the feature.
The predicted outcome t from each of the bootstrap samples in Di is then compared to form an

aggregate score:

ŷ = arg max
i

 n∑
j=1

δ(ŷ j) = t

 , t ∈ {0, 1} (3.28)

where ŷ is the predicted outcome and δ is the Kronecker delta function.
Finally, the predictions from a random forest algorithm can be given by:

f (x) =
1
N

N∑
i

Ti(x) (3.29)

where f (x) is the predicted class label for an input vector x, N is the number of decision trees in the

forest and Ti(x) is the prediction of the ith decision tree. The scaling factor
1
N

ensures that the output
is a probability distribution over possible class label.

3.7.5. Classifier 5: AdaBoost

AdaBoost, short for adaptive boosting, is a popular ensemble learning algorithm used for binary
classification and regression tasks [30]. AdaBoost combines multiple weak classifiers into a strong
classifier by assigning weights to each weak classifier based on their accuracy [53]. Let C(x) be the
binary classifier that predicts the label of input data x. The final prediction of the Adaboost model is
given by:

H(x) = sign
(∑

αt ∗Ct(x)

)
(3.30)

where H(x) is the final prediction, αt is the weight assigned to weak classifier Ct and sign is the sign
function that returns +1 or −1 depending on the sign of its argument.

To update the weights of the input data samples after each iteration, we use the following formula:

wi = wi ∗ exp(−αt ∗ yi ∗Ct(xi)) (3.31)
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where wi is the weight of data point i, yi is the true label of data point i and xi is the input data. If data
point i is correctly classified by weak classifier Ct, yi ∗Ct(xi) is positive and the weight wi is decreased.
If data point i is misclassified, yi ∗Ct(xi) is negative and the weight wi is increased.

The weight assigned to each weak classifier is determined by its accuracy on the training data. Let
ϵt be the classification error of weak classifier Ct, defined as:

ηt =

∑
(wi ∗ |yi −Ct(xi)|)∑

(wi)
(3.32)

The weight αt is then computed as:

αt = 0.5 ∗ ln
1 − ηt

ηt
(3.33)

The weight αt is positive if the classification error of Ct is less than 0.5 and negative otherwise. A
higher weight is assigned to weak classifiers with lower classification error.

3.7.6. Classifier 6: Bagging classifier

The bagging classifier is a powerful ensemble learning method that utilizes multiple independently
trained classifiers to enhance prediction accuracy and mitigate overfitting [47]. Bagging Classifier, a
contraction of bootstrap aggregating, generates several bootstrap samples of the input data and trains
individual classifiers on each sample [50].

The bagging classifier training process commences by randomly selecting data points from the input
dataset with replacement, creating several bootstrap samples. Subsequently, a classifier is trained on
each bootstrap sample, utilizing the same learning algorithm. Upon completing the training phase, the
trained classifiers are employed to make predictions on unseen data. The final prediction is derived
by consolidating the predictions of each classifier via majority voting. The bagging classifier’s final
prediction for a given input sample can be represented as:

ŷ = mode(ŷ1, ŷ2, ŷ3, ..., ŷT ) (3.34)

where ŷ is the final prediction of the bagging classifier, ŷ1, ŷ2, ŷ3, ..., ŷT are the predictions of individual
classifiers and mode is the statistical mode, which is the value that appears most frequently in the set
of predictions.

3.7.7. Super learners

Super learners (SL) are ensemble methods that combine multiple machine learning models to
improve prediction accuracy and reduce overfitting. The SL algorithm uses two stages: base learning
and meta learning. During the base learning stage, multiple models are trained using the training data,
while in the meta learning stage, a meta model is used to combine the predictions of these base models
to generate the ultimate prediction. Figure 11 illustrates the implementation of super learner in this
study. Let X be the input data, y be the target variable and M be the set of base models. For each base
model m in M, let fm(X) be the predicted outcome of m on X. Then, the super learner output is given
by:
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Figure 11. The implementation of super learner in this study.

S L(X) = g( f1(X), f2(X), ..., fm(X)) (3.35)

where g is the meta model that combines the predictions of the base models.
For our first SL ensemble, we selected three base estimators: logistic regression (LR), decision

trees (DT) and support vector classification (SVC). We chose these estimators based on their individual
strengths and potential synergies that could be achieved by combining them. Once we had trained our
base estimators, we used a random forest as the meta estimator to combine their predictions. The
random forest algorithm is known for its ability to reduce overfitting and improve prediction accuracy
by using multiple decision trees.

For our second SL ensemble, we selected three different base estimators: random forest (RF),
adaBoost and bagging classifier. The random forest algorithm was selected due to its capacity to
handle large datasets with high dimensionality, the AdaBoost algorithm was chosen for its effectiveness
in enhancing the performance of weak learners and the bagging classifier was chosen for its ability to
alleviate overfitting and enhance generalization. We trained and evaluated each of these base estimators
using various metrics to identify their strengths and weaknesses. To combine the predictions of the base
estimators in our second SL ensemble, we used a DT as the meta estimator. The decision tree algorithm
is a simple yet powerful algorithm that recursively splits the dataset into smaller subsets based on input
features to predict the outcome.

3.7.8. Weighted average voting

In our research, we also employed weighted average voting (WAV) as another ensemble method
to combine the predictions of our base estimators. The weights assigned to each base estimator were
based on their performance on the training data. The weights assigned to each base estimator depend
on their performance on the training data. The better a base estimator performs on the training data, the
higher its weight in the ensemble. The weighted average of the predicted values of the base estimators
can be represented as:
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ŷWAV =

n∑
i=1

wiŷi (3.36)

where ŷWAV is the final prediction of the ensemble, n is the number of base estimators, ŷi is the predicted
value of the ith base estimator and wi is the weight assigned to the ith base estimator. We found that
WAV can be a simple yet effective ensemble method for combining the predictions of multiple base
estimators, especially when the base estimators have comparable performance on the training data.

3.8. Performance evaluation metrics

In this section, we will provide a brief overview of utilized performance evaluation metrics, along
with our model.

3.8.1. Accuracy

Accuracy is one of the most used performance evaluation metrics and it measures the proportion of
correct predictions made by a model. Mathematically, accuracy is defined as follows:

Accuracy =
Number of correct predictions
Total number of predictions

(3.37)

3.8.2. Precision

Precision is a performance evaluation metric that measures the proportion of true positives (i.e.,
correct positive predictions) out of all positive predictions made by a model. Mathematically, precision
is defined as follows:

Precision =
Number of true positives

Number of true positives + Number of false positives
(3.38)

3.8.3. Recall

Recall is a performance evaluation metric that measures the proportion of true positives (i.e., correct
positive predictions) out of all actual positive instances in the dataset. Mathematically, recall is defined
as follows:

Recall =
Number of true positives

Number of true positives + Number of false negatives
(3.39)

3.8.4. F1-Score

The F1 score is a performance evaluation metric that combines precision and recall providing a
single metric that balances both metrics. The F1 score is defined as the harmonic mean of precision
and recall and is calculated as follows:

F1score = 2 ×
Precision × Recall
Precision + Recall

(3.40)
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4. Results

In this research study, we utilized two iterations of the super learner (SL) ensemble technique
as our primary methodology for predicting outcomes in our dataset. The SL ensemble technique is
an effective method for combining multiple machine learning models to achieve higher prediction
accuracy. We used an 80-20 data splitting approach to train and test our models. Two super learner
(SL) ensembles with three base estimators each were employed to enhance prediction accuracy. The
first SL ensemble included logistic regression, decision trees and support vector classification, while
the second SL ensemble comprised random forest, AdaBoost andbBagging classifier. To improve
prediction accuracy further, a weighted average voting technique was utilized based on the performance
of the individual models. After evaluating the performance of the weighted average voting technique
using various metrics such as accuracy, precision, recall and F1-score, we found that the ensemble
model consistently outperformed individual models. The results highlight the effectiveness of our
methodology in predicting thyroid disease outcomes with high accuracy, highlighting the benefits of
using SL ensembles and the weighted average voting technique. We assessed the effectiveness of the
weighted average voting technique by comparing its performance to that of the individual models and
super learner ensembles. We employed multiple performance metrics, including accuracy, precision,
recall and F1-score, to evaluate the performance of the weighted average voting technique.

Table 3 shows the performance of the proposed methodology for the first dataset. The original
dataset without ADASYN resampling had an accuracy of 99.58%, precision of 99.48%, recall of
95.87% and F1-score of 97.56%. After resampling without ADASYN, the accuracy improved to
99.90%, precision to 99.89%, recall to 99.90% and F1-score to 99.90%. This improvement in
performance indicates that the proposed methodology is effective in dealing with imbalanced datasets.

Table 3. Performance of proposed methodology for first dataset.

Accuracy Precision Recall F1-score
Original dataset
(without ADASYN)

99.58 % 99.48 % 95.87 % 97.56%

Resampled dataset
(with ADASYN
resampling)

99.90 % 99.89 % 99.90 % 99.90%

Table 4 shows the performance of the proposed methodology for the second dataset. The original
dataset without ADASYN resampling had an accuracy of 99.602%, precision of 99.785%, recall of
97.413% and F1-score of 98.565%. After resampling without ADASYN, the accuracy improved to
99.714%, precision to 99.711%, recall to 99.717% and F1-score to 99.713%. This improvement
in performance again demonstrates the effectiveness of the proposed methodology in dealing with
imbalanced datasets.
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Table 4. Performance of proposed methodology for second dataset.

Accuracy Precision Recall F1-score
Original dataset
(without ADASYN)

99.602 % 99.785 % 97.413 % 98.565 %

Resampled dataset
(with ADASYN
resampling)

99.714 % 99.711 % 99.717 % 99.713%

The confusion matrices for the first dataset before ADASYN resampling are illustrated in Figure 12.
Similarly, Figure 13 illustrates the confusion matrices for the first dataset before ADASYN resampling.

(a) (b)

Figure 12. Confusion matrices of first dataset without resampling: (a) classification of
number of test samples; (b) classification of test samples in percentage.

(a) (b)

Figure 13. Confusion matrices of second dataset without resampling: (a) classification of
number of test samples; (b) classification of test samples in percentage

Figure 14 and Figure 15 show the confusion matrices for both datasets with ADASYN resampling
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and with weighted average voting. Figure 14 (a) shows the number of test samples classified as the
model and Figure 14 (b) shows the results in percentage from first dataset. Similarly, Figure 15 (a)
shows the number of test samples classified by the model and Figure 15 (b) shows the results in
percentage from second dataset.

(a) (b)

Figure 14. Confusion matrices of first dataset without resampling: (a) classification of
number of test samples; (b) classification of test samples in percentage

(a) (b)

Figure 15. Confusion matrices of first dataset without resampling: (a) classification of
number of test samples; (b) classification of test samples in percentage

Comaprison with existing works

We have compared our proposed methodology with existing works done on the same dataset. Table
5 presents a comparison of our proposed methodology, which uses an ensemble, with existing studies
on the first and second datasets. The performance metrics, such as accuracy, precision, recall and F1-
score, are used to evaluate and compare the effectiveness of each technique employed in the respective
studies.
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For the first dataset (KEEL), our proposed SL ensemble method achieved an accuracy of 99.602%,
precision of 99.785%, recall of 97.413% and F1-score of 98.565%. When compared to other studies
on the same dataset, our methodology demonstrates superior performance in all metrics. For instance,
study [54] using KNN achieved an accuracy of 98.600%, while study [55] employing KNN reached
an accuracy of 96.900% and study [56] utilizing a liquid state machine (LSM) Autoencoder had an
accuracy of 98.900%. Additionally, our method’s precision and recall values outperform those reported
in [56].

Table 5. Comparison of proposed methodology with existing studies on first dataset.

Ref Year Dataset Technique Accuracy Precision Recall F1-score
This work 2023 KEEL SL ensemble 99.602 % 99.785 % 97.413 % 98.565 %
[54] 2016 KEEL KNN 98.600 % - - -
[55] 2018 KEEL KNN 96.900 % - - -
[56] 2021 KEEL LSM autoencoder 98.900 % 99.600 % 75.100 % -

For the second dataset (hypothyroid), our proposed SL ensemble method achieved an accuracy of
99.714%, precision of 99.711%, recall of 99.717% and F1-score of 99.713%. When compared to other
studies on the same dataset, our methodology again demonstrates superior performance in all metrics.
Study [57] using KNN achieved an accuracy of 98.000%, while study [58] employing a random forest
(RF) with sequential minimal optimization (SMO) reached an accuracy of 99.440% and study [59]
utilizing a decision tree (DT) had an accuracy of 99.580%. It is worth noting that our method’s recall
value surpasses that reported in study [59]. As illustrated in Table 6, the proposed methodology, which
employs an ensemble, demonstrates superior performance in terms of accuracy, precision, recall and
F1-score when compared to other studies on both datasets.

Table 6. Comparison of proposed methodology with existing studies on second dataset.

Ref Year Dataset Technique Accuracy Precision Recall F1-score
This work 2023 Hypothyroid SL ensemble 99.714 % 99.711 % 99.717 % 99.713 %
[57] 2018 Hypothyroid KNN 98.000 % - - -
[58] 2021 Hypothyroid RF with SMO 99.440 % - - -
[59] 2022 Hypothyroid DT 99.580 % - 99.600 % -

The proposed approach in the last also compared with the multiple distinct methodologies having
a similar set of approach for the separate problem statement. For this purpose three studies have been
selected . In [60] the Kernel slow feature analysis (KSFA) is implemented for the fault detection of the
air unit. KSFA is a feature extraction approach that may capture time series data’s temporal dynamics.
KSFA can extract time-invariant slow features that may be utilized to enhance the performance of
machine learning models using time series data. KSFA may be used to extract features from time series
data in batches, which is beneficial when working with huge datasets. On the other hand, ADASYN
can effectively produce additional training samples in order to build a somewhat balanced dataset and
therefore get an efficient and robust prediction model. In [61] hybrid resampling technique (HRT)
used with extreme learning machine ensemble. Both ADASYN and HRT are excellent oversampling
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approaches for enhancing machine learning model performance on unbalanced datasets. The approach
used is determined by the unique use case and the type of the data. ADASYN is a computationally
efficient and simple oversampling approach that can produce synthetic data for minority class instances
adaptively. HRT is a hybrid resampling approach that uses oversampling and undersampling to balance
the dataset and decrease model bias and variation. In comparison to ADASYN, HRT might be
computationally costly. HRT may not be appropriate for all sorts of unbalanced datasets, but ADASYN
is a computationally efficient and simple oversampling strategy. In [62] a technique of feature sparse
representation is implemented. While feature sparse representation is intended to solve the issue of
lack of features in machine learning, ADASYN is intended to address the issue of class imbalance.
Understanding why feature sparse representation occurs is essential when constructing models since it
may lead to issues like overfitting and less-than-ideal outcomes in learning models. The oversampling
method ADASYN is useful for enhancing the performance of machine learning models on unbalanced
datasets. A solution to the issue of sparse features in machine learning is feature sparse representation.
The unique use case and the kind of data determine the approach to utilize.

5. Discussion

The research study presented in this paper aims to provide insights into the effectiveness of a
proposed methodology for dealing with imbalanced datasets and the performance of an ensemble
model in predicting thyroid disease outcomes. The results of the study demonstrate that addressing
class imbalance through resampling techniques is an essential step in the preprocessing of imbalanced
datasets, as it significantly improves the performance of machine learning models. The accuracy,
precision, recall and F1-score showed significant improvements after applying ADASYN resampling
in both datasets. This indicates that addressing class imbalance through resampling techniques is
an essential step in the preprocessing of imbalanced datasets, as it improves the performance of the
machine learning models. The results corroborate the importance of considering and addressing class
imbalance in the data during the preprocessing stage.

The results demonstrate that the ensemble model, which combines multiple machine learning
models, achieved higher prediction accuracy than any individual model alone. This finding supports
the idea that combining the strengths of different models through ensemble techniques can lead to
improved performance. The use of ensembles with distinct combinations of base and meta estimators
further reinforces this notion, as it allows for leveraging the advantages of each model while mitigating
their individual weaknesses. The weighted average voting technique, which assigns different weights
to the models based on their performance, further improved the prediction accuracy of the ensemble
model. This demonstrates that the incorporation of the weighted average voting technique helps to
better capture the strengths of each model in the ensemble, leading to a more accurate and reliable
prediction. The results obtained for both datasets indicate that the proposed methodology is not only
effective in dealing with imbalanced datasets but also robust in predicting thyroid disease outcomes.
The consistency in the improvement of performance metrics for both datasets demonstrate the potential
of the methodology to be generalized and applied to other datasets with similar challenges.

For the first dataset (KEEL), our proposed SL ensemble method achieved an accuracy of 99.602%,
precision of 99.785%, recall of 97.413% and F1-score of 98.565%. When compared to other studies
on the same dataset, our methodology demonstrates superior performance in all metrics. The work
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[54] employed KNN, a powerful and flexible class of models that have shown remarkable success in
various tasks. However, their accuracy of 98.600% falls short compared to our SL ensemble. The
work [55] used k-nearest neighbors (KNN), a simple yet effective algorithm for classification tasks,
but only reached an accuracy of 96.900%. The work [56] utilized a LSM autoencoder, a bio-inspired
neural network model and achieved an accuracy of 98.900%. The precision and recall values reported
in the paper [56] are lower than those in our method, which indicates that our method has better
discriminatory power between the classes.

For the second dataset (hypothyroid), our proposed SL ensemble method achieved an accuracy of
99.714%, precision of 99.711%, recall of 99.717% and F1-score of 99.713%. When compared to other
studies on the same dataset, our methodology again demonstrates superior performance in all metrics.
The work [57] used KNN and achieved an accuracy of 98.000%, which is lower than our SL ensemble.
The paper [58] employed a random forest (RF) with sequential minimal optimization (SMO), a
combination of a powerful ensemble method and a technique for solving large-scale optimization
problems. However, their accuracy of 99.440% is still lower than ours. Study [59] utilized a decision
tree (DT), a popular and interpretable machine learning model and achieved an accuracy of 99.580%.
Although their recall value is comparable to our method, our method still outperforms the study [59]
in accuracy, precision and F1-score.

However, it is important to consider some limitations of the research study and potential areas for
improvement. While the ensemble model showed improved performance, it may be computationally
expensive due to the use of multiple base estimators and iterations of the super learner technique.
Future research could explore methods to optimize the computational efficiency of the ensemble model
without compromising its performance. Additionally, the selection of base and meta estimators in
the super learner ensembles was based on their individual strengths and potential synergies when
combined. However, the optimal combination of models may vary depending on the dataset and the
problem at hand.

6. Conclusions

The proposed methodology for thyroid cancer classification using a super learner ensemble
model with resampling techniques and weighted average voting showed significant improvements
in performance on imbalanced datasets. The results demonstrate the importance of addressing class
imbalance in the data during the preprocessing stage and the benefits of combining multiple machine
learning models for improving prediction accuracy. The super learner ensemble method achieved
higher prediction accuracy than any individual model alone and the use of distinct combinations of
base and meta estimators further improved performance. The proposed methodology showed superior
performance compared to other studies on the same datasets, demonstrating its potential to be applied
to other datasets with similar challenges. However, the computational complexity of the ensemble
model and the optimal selection of base and meta estimators remain as limitations that require further
research. Overall, the proposed methodology shows promise in improving the accuracy of thyroid
cancer classification and can potentially aid in the diagnosis and treatment of thyroid cancer patients.
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