Research article Special Issues

On a class of analytic functions closely related to starlike functions with respect to a boundary point

  • Received: 27 March 2023 Revised: 29 June 2023 Accepted: 05 July 2023 Published: 20 July 2023
  • MSC : 30C45, 30C80, 33C50

  • In this article, we introduce a new class of analytic functions in the open unit disc that are closely related to functions that are starlike with respect to a boundary point. For this new class of functions, we obtain representation theorem, interesting coefficient estimates and also certain differential subordination implications involving this new class.

    Citation: Kamaraj Dhurai, Nak Eun Cho, Srikandan Sivasubramanian. On a class of analytic functions closely related to starlike functions with respect to a boundary point[J]. AIMS Mathematics, 2023, 8(10): 23146-23163. doi: 10.3934/math.20231177

    Related Papers:

  • In this article, we introduce a new class of analytic functions in the open unit disc that are closely related to functions that are starlike with respect to a boundary point. For this new class of functions, we obtain representation theorem, interesting coefficient estimates and also certain differential subordination implications involving this new class.



    加载中


    [1] D. Aharonov, M. Elin, D. Shoikhet, Spiral-like functions with respect to a boundary point, J. Math. Anal. Appl., 280 (2003), 17–29. https://doi.org/10.1016/S0022-247X(02)00615-7 doi: 10.1016/S0022-247X(02)00615-7
    [2] R. M. Ali, V. Ravichandran, N. Seenivasagan, Coefficient bounds for $p$-valent functions, Appl. Math. Comput., 187 (2007), 35–46. https://doi.org/10.1016/j.amc.2006.08.100 doi: 10.1016/j.amc.2006.08.100
    [3] Z. J. Jakubowski, On properties of the Pick function and some applications of them, Acta Universitatis Purkynianae, 42 (1999), 51–62.
    [4] Z. J. Jakubowski, A. Włodarczyk, On some classes of functions of Robertson type, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 59 (2005), 27–42.
    [5] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12. https://doi.org/10.1090/S0002-9939-1969-0232926-9 doi: 10.1090/S0002-9939-1969-0232926-9
    [6] A. Lecko, On the class of functions starlike with respect to a boundary point, J. Math. Anal. Appl., 261 (2001), 649–664. https://doi.org/10.1006/jmaa.2001.7564 doi: 10.1006/jmaa.2001.7564
    [7] A. Lecko, A. Lyzzaik, A note on univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl., 282 (2003), 846–851. https://doi.org/10.1016/S0022-247X(03)00258-0 doi: 10.1016/S0022-247X(03)00258-0
    [8] A. Lecko, On coefficient inequalities in the Carathéodory class of functions, Ann. Polon. Math., 75 (2000), 59–67. https://doi.org/10.4064/ap-75-1-59-67 doi: 10.4064/ap-75-1-59-67
    [9] A. Lecko, Some methods in the theory of univalent functions, Oficyna Wdawnicza Politechniki Rzeszowskiej, 2005.
    [10] A. Lecko, $\delta$-spirallike functions with respect to a boundary point, Rocky Mountain J. Math., 38 (2008), 979–992. https://doi.org/10.1216/RMJ-2008-38-3-979 doi: 10.1216/RMJ-2008-38-3-979
    [11] A. Lyzzaik, On a conjecture of M. S. Robertson, Proc. Amer. Math. Soc., 91 (1984), 108– 110. http://doi.org/10.1090/s0002-9939-1984-0735575-7 doi: 10.1090/s0002-9939-1984-0735575-7
    [12] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, International Press Inc., 1992.
    [13] S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, CRC Press, 2000. https://doi.org/10.1201/9781482289817
    [14] M. H. Mohd, M. Darus, Starlike function with respect to a boundary point defined by subordination, Adv. Math. Sci. J., 1 (2012), 15–21.
    [15] D. Prokhorov, J. Szynal, Inverse coefficients for $(\alpha, \beta)$-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 35 (1981), 125–143.
    [16] M. S. Robertson, Univalent functions starlike with respect to a boundary point, J. Math. Anal. Appl., 81 (1981),, 327–345. https://doi.org/10.1016/0022-247x(81)90067-6
    [17] H. Silverman, E. M. Silvia, Subclasses of univalent functions starlike with respect to a boundary point, Houston J. Math., 16 (1990), 289–299.
    [18] S. Sivasubramanian, On a closely related class involving spirallike functions with respect to a boundary point, Mediterr. J. Math., 17 (2020), 92. https://doi.org/10.1007/s00009-020-01529-z doi: 10.1007/s00009-020-01529-z
    [19] D. Styer, On weakly starlike multivalent functions, J. Analyse Math., 26 (1973), 217–233. https://doi.org/10.1007/bf02790430 doi: 10.1007/bf02790430
    [20] P. G. Todorov, On the univalent functions starlike with respect to a boundary point, Proc. Amer. Math. Soc., 97 (1986), 602–604. https://doi.org/10.1090/s0002-9939-1986-0845972-9 doi: 10.1090/s0002-9939-1986-0845972-9
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1319) PDF downloads(92) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog