
The main interest of this work is to construct surface family pair with the symmetry of Bertrand pair in Euclidean 3-space E3. Then, by employing the Serret-Frenet frame, we conclude the sufficient and necessary conditions of surface family pair interpolating Bertrand pair as mutual geodesic curves. Moreover, the conclusion to ruled surface family pair is also obtained. Meanwhile, this work is demonstrated through several examples.
Citation: Areej A. Almoneef, Rashad A. Abdel-Baky. Surface family pair with Bertrand pair as mutual geodesic curves in Euclidean 3-space E3[J]. AIMS Mathematics, 2023, 8(9): 20546-20560. doi: 10.3934/math.20231047
[1] | Yanlin Li, Kemal Eren, Soley Ersoy . On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space. AIMS Mathematics, 2023, 8(9): 22256-22273. doi: 10.3934/math.20231135 |
[2] | Ayman Elsharkawy, Clemente Cesarano, Abdelrhman Tawfiq, Abdul Aziz Ismail . The non-linear Schrödinger equation associated with the soliton surfaces in Minkowski 3-space. AIMS Mathematics, 2022, 7(10): 17879-17893. doi: 10.3934/math.2022985 |
[3] | Ayman Elsharkawy, Ahmer Ali, Muhammad Hanif, Fatimah Alghamdi . Exploring quaternionic Bertrand curves: involutes and evolutes in E4. AIMS Mathematics, 2025, 10(3): 4598-4619. doi: 10.3934/math.2025213 |
[4] | Maryam T. Aldossary, Rashad A. Abdel-Baky . On the Blaschke approach of Bertrand offsets of spacelike ruled surfaces. AIMS Mathematics, 2022, 7(10): 17843-17858. doi: 10.3934/math.2022983 |
[5] | Gülnur Şaffak Atalay . A new approach to special curved surface families according to modified orthogonal frame. AIMS Mathematics, 2024, 9(8): 20662-20676. doi: 10.3934/math.20241004 |
[6] | Nadia Alluhaibi . Circular surfaces and singularities in Euclidean 3-space E3. AIMS Mathematics, 2022, 7(7): 12671-12688. doi: 10.3934/math.2022701 |
[7] | Ayşe Yavuz, Melek Erdoǧdu . Non-lightlike Bertrand W curves: A new approach by system of differential equations for position vector. AIMS Mathematics, 2020, 5(6): 5422-5438. doi: 10.3934/math.2020348 |
[8] | Emad Solouma, Ibrahim Al-Dayel, Meraj Ali Khan, Youssef A. A. Lazer . Characterization of imbricate-ruled surfaces via rotation-minimizing Darboux frame in Minkowski 3-space E31. AIMS Mathematics, 2024, 9(5): 13028-13042. doi: 10.3934/math.2024635 |
[9] | M. Khalifa Saad, Nural Yüksel, Nurdan Oğraş, Fatemah Alghamdi, A. A. Abdel-Salam . Geometry of tubular surfaces and their focal surfaces in Euclidean 3-space. AIMS Mathematics, 2024, 9(5): 12479-12493. doi: 10.3934/math.2024610 |
[10] | Özgür Boyacıoğlu Kalkan, Süleyman Şenyurt, Mustafa Bilici, Davut Canlı . Sweeping surfaces generated by involutes of a spacelike curve with a timelike binormal in Minkowski 3-space. AIMS Mathematics, 2025, 10(1): 988-1007. doi: 10.3934/math.2025047 |
The main interest of this work is to construct surface family pair with the symmetry of Bertrand pair in Euclidean 3-space E3. Then, by employing the Serret-Frenet frame, we conclude the sufficient and necessary conditions of surface family pair interpolating Bertrand pair as mutual geodesic curves. Moreover, the conclusion to ruled surface family pair is also obtained. Meanwhile, this work is demonstrated through several examples.
The geodesic among two points on a surface is located as the curve embedded in the surface that relates the points with minimal distance [1,2]. Geodesic also has been vastly utilized in different industries, such as cutting and painting path, tent manufacturing, fiberglass tape windings in pipe manufacturing, and textile manufacturing [3,4,5,6,7]. Generally, the study in geodesic concentrated on how to find and describe geodesic on the given surfaces, and there were a lots of papers employing on such a problem [8,9,10]. In the designing industry of garments, shoes, and so on, it is oftentimes wanted for designers to establish a family of surfaces from a specific spatial geodesic curve, through which they can choose those fulfilling the fashion tastes of customers. This may be considered as the reverse problem of the above-mentioned. In [11], Wang et al. considered the problem of constructing a family of surfaces from a specified spatial geodesic curve, through which each surface can be a nominee for style designing. They proved the necessary and sufficient condition for the coefficients to be content with both the geodesic and the isoparametric requirements. Stimulate by Wang et al. [11], researchers obtained restrictions for a prescribed curve to be a distinct curve on designed surfaces [12,13,14,15,16,17,18,19,20,21,22,23,24,25].
For the theory of space curves, the symmetrical relationship among the curves is an interesting problem. Bertrand curve is one of the classical private curves. Two curves are named Bertrand pair if there exists linearly relationship of their principal normal vectors at the corresponding points [1,2]. The Bertrand curve can be considered as the generalization of the helix. The helix, as a specific type of curve, has drawn the awareness of mathematicians as well as scientists because of its different implementations, for example, clarification of DNA, carbon nano-tube, nano-springs, a-helices, the geometrical shaping of linear chained polymers stabilized as helices and the eigenproblems interpreted for collocation of molecules (see [26,27,28,29]). Moreover, the Bertrand curves perform special examples of offset curves which are applied in computer-aided manufacture (CAM), and computer-aided design (CAD) (see [30,31]). However, for our knowledge, there is no work to constructing surface family pair interpolating curve pair to be geodesic curves in Euclidean 3-space E3. This work is intend to serve such a need, we take into consideration Bertrand pair as geodesic curves to constructing surface family pair in E3.
The major advantage of this work is to establish surface family pair from given Bertrand pair. Hence, the sufficient and necessary conditions for the given Bertrand pair to be the geodesic pair are given in details. As an application, some representative Bertrand pair are selected to form their corresponding surface family pair that have such Bertrand pair as geodesic curves. We extended the study to ruled surface family pair.
The ambient space is the Euclidean space E3 and for our work we have used [1,2] as general references. A curve is regular if it confess a tangent line at each point of the curve. In the following, all curves are supposed to be regular. Given a spatial curve α(s), which is expressed by arc length parameter s. We assume ..α(s)≠ 0 for all s ∈ [0,L], since this would give us a straight line. In this paper, .α(s) and α′(r) indicate the derivatives of α with respect to arc-length parameter s and arbitrary parameter r, respectively. For each point of α(s), the set {t(s), n(s), b(s)} is named the Serret-Frenet frame on α(s), where t(s)=.α(s), n(s) =..α(s)/‖ and {\bf{b}}(s) = {\bf{t}}(s)\times {\bf{n}}(s) are the unit tangent, principal normal, and binormal vectors of the curve at the point {\boldsymbol{\alpha }}(s) , respectively. The arc-length derivative of the Serret-Frenet frame is governed by the relations [1]:
\begin{equation} \left( \begin{array}{l} \overset{.}{{\bf{t}}} \\ \overset{.}{{\bf{n}}} \\ \overset{.}{{\bf{b}}} \end{array} \right) = \left( \begin{array}{lll} 0 & \kappa (s) & 0 \\ -\kappa (s) & 0 & \tau (s) \\ 0 & -\tau (s) & 0 \end{array} \right) \left( \begin{array}{l} {\bf{t}} \\ {\bf{n}} \\ {\bf{b}} \end{array} \right) , \end{equation} | (2.1) |
where the curvature \kappa (s) and torsion \tau (s) are specified by
\begin{equation*} \kappa (s) = \left \Vert \overset{..}{{\boldsymbol{\alpha }}}(s)\right \Vert {\rm{, \ }}\tau (s) = \frac{\det (\overset{.}{{\boldsymbol{\alpha }}}(s),\overset{..}{{\boldsymbol{ \alpha }}}(s),\overset{...}{{\boldsymbol{\alpha }}}(s))}{\left \Vert \overset{..}{ {\boldsymbol{\alpha }}}(s)\right \Vert ^{2}}. \end{equation*} |
Although the parameter of arc-length is simple for analyzing, in the majority of practical situations, the parameter of a given curve is commonly not in arc-length parametrization. We can represent the given curve by employing arc-length representation. Given the curve
\begin{equation*} {\boldsymbol{\alpha }}(r) = (\alpha _{1}(r),\; \alpha _{2}(r),\; \alpha _{3}(r)),\; 0\leq r\leq H, \end{equation*} |
where the parameter r is not the arc-length. The synthesis of the Serret-Frenet frame are specified by [1]:
\begin{equation} {\bf{t}}(r) = \frac{{\boldsymbol{\alpha }}^{^{\prime }}(r)}{\left \Vert {\boldsymbol{ \alpha }}^{^{\prime }}(r)\right \Vert },\;{\bf{b}}(r) = \frac{{\boldsymbol{ \alpha }}^{^{\prime }}(r)\times {\boldsymbol{\alpha }}^{^{^{\prime \prime }}}(r)}{ \left \Vert {\boldsymbol{\alpha }}^{^{\prime }}(r)\times {\boldsymbol{\alpha }} ^{^{^{\prime \prime }}}(r)\right \Vert },\;{\bf{n}}(r) = {\bf{b}} (r)\times {\bf{t}}(r),\ (\frac{d}{dr} = ^{\prime }), \end{equation} | (2.2) |
and the Serret-Frenet formula are
\begin{equation} \left( \begin{array}{l} {\bf{t}}^{^{\prime }}(r) \\ {\bf{n}}^{^{\prime }}(r) \\ {\bf{b}}^{^{\prime }}(r) \end{array} \right) = \left( \begin{array}{lll} 0 & \kappa (r)\left \Vert {\boldsymbol{\alpha }}^{^{\prime }}(r)\right \Vert & 0 \\ -\kappa (r)\left \Vert {\boldsymbol{\alpha }}^{^{\prime }}(r)\right \Vert & 0 & \tau (r)\left \Vert {\boldsymbol{\alpha }}^{^{\prime }}(r)\right \Vert \\ 0 & -\tau (r)\left \Vert {\boldsymbol{\alpha }}^{^{\prime }}(r)\right \Vert & 0 \end{array} \right) \left( \begin{array}{l} {\bf{t}}(r) \\ {\bf{n}}(r) \\ {\bf{b}}(r) \end{array} \right) . \end{equation} | (2.3) |
We utilize basic notification on Bertrand pair from [1,2]. Let {\boldsymbol{\alpha }}(s) , and \widehat{{\boldsymbol{\alpha }}}(s) be two curves in \mathbb{E }^{3} , {\bf{n}}(s) and \; \widehat{{\bf{n}}}(s) are principal normal vectors of them respectively, the pair { {\boldsymbol{\alpha }}(s) , \widehat{ {\boldsymbol{\alpha }}}(s) } is named Bertrand pair if {\bf{n}}(s) and \widehat{{\bf{n}}}(s) are linearly dependent at the corresponding points, {\boldsymbol{\alpha }}(s) is named the Bertrand mate of \widehat{{\boldsymbol{\alpha }}}({s}) , and
\begin{equation} \widehat{{\boldsymbol{\alpha }}}(s) = {\boldsymbol{\alpha }}(s)+f{\bf{n}}(s), \end{equation} | (2.4) |
where f is a stationary. Therefore, the formulae the Serret-Frenet frame of {\boldsymbol{\alpha }}(s) with that of \widehat{{\boldsymbol{\alpha }}}(s) are
\begin{equation} \left( \begin{array}{l} \widehat{{\bf{t}}} \\ \widehat{{\bf{n}}} \\ \widehat{{\bf{b}}} \end{array} \right) = \left( \begin{array}{lll} \cos \psi & 0 & \sin \psi \\ \ \ \ 0 & 1 & \ \ \ 0 \\ -\sin \psi & 0 & \cos \psi \end{array} \right) \left( \begin{array}{l} {\bf{t}} \\ {\bf{n}} \\ {\bf{b}} \end{array} \right) , \end{equation} | (2.5) |
where \psi is a constant angle.
We signalize a surface M by
\begin{equation} M:{\bf{y}}(s,t) = \left( y_{1}\left( s,t\right) ,y_{2}\left( s,t\right) ,y_{3}\left( s,t\right) \right) ,\ \ (s,t)\in \mathbb{D}\subseteq \mathbb{R} ^{2}. \end{equation} | (2.6) |
If {\bf{y}}_{j}(s, t) = \frac{\partial {\bf{y}}}{\partial j} , the surface normal is
\begin{equation} {\bf{N(}}s,t) = {\bf{y}}_{s}\wedge {\bf{y}}_{t}, \end{equation} | (2.7) |
which is orthogonal to each of the vectors {\bf{y}}_{s} and {\bf{y}} _{t} .
Remark 2.1. [1,2] A curve on a surface is a geodesic if and only if the principal normal vector of the curve is everywhere parallel to surface normal
A curve {\boldsymbol{\alpha }}(s) on a surface {\bf{y}}(s, t) is an isoparametric curve if it has a constant s or t -parameter value. In other words, there exists a parameter t_{0} such that {\boldsymbol{\alpha }}(s) = {\bf{y}}(s, t_{0}) or {\boldsymbol{\alpha }}(t) = {\bf{y}}(s_{0}, t) . Given a parametric curve {\boldsymbol{\alpha }}(s) , we call it an isogeodesic of the surface {\bf{y}}(s, t) if it is both an geodesic and a parameter curve on {\bf{y}}(s, t) .
This section presents a new approach for constructing surface family pair interpolating Bertrand pair as mutual geodesic curves in \mathbb{E}^{3} . To do this, we take into account a Bertrand pair, such that the surfaces tangent planes are coincident with the curves rectifying planes.
Let {\boldsymbol{\alpha }}(s) be a curve with \left \Vert \overset{..}{{\boldsymbol{ \alpha }}}(s)\right \Vert \neq 0 , \widehat{{\boldsymbol{\alpha }}}(s) is Bertrand mate of {\boldsymbol{\alpha }}(s) , and \{ \widehat{\kappa }(s) , \widehat{\tau } (s) , \widehat{{\bf{t}}}(s), \widehat{{\bf{n}}}(s) , \widehat{{\bf{b}} }(s)\} is the Frenet-Serret apparatus of \widehat{{\boldsymbol{\alpha }}}(s) as in Eq (2.1). The surface family M interpolating {\boldsymbol{\alpha }}(s) can be written as [1]:
\begin{equation} M:{\bf{y}}(s,t) = {\boldsymbol{\alpha }}(s)+a(s,t){\bf{t}}(s){\bf{+}}b(s,t) {\bf{b(}}s),\ \ 0\leq t\leq T, \end{equation} | (3.1) |
and the surface family \widehat{M} interpolating \widehat{{\boldsymbol{\alpha }} }(s) is
\begin{equation} \widehat{M}:\widehat{{\bf{y}}}(s,t) = \widehat{{\boldsymbol{\alpha }}}(s)+a(s,t) \widehat{{\bf{t}}}(s){\bf{+}}b(s,t)\widehat{{\bf{b}}}{\bf{(}} \widehat{s}),\ \ 0\leq t\leq T. \end{equation} | (3.2) |
Here a(s, t), b(s, t)\in C^{1} are named marching-scale functions.
In order to obtain the \widehat{M} interpolating \widehat{{\boldsymbol{\alpha }} }(s) as a mutual geodesic curve, according to Eqs (3.1) and (3.2), we discuss what the marching-scale functions should satisfy. To do this, we have
\begin{equation} \left. \begin{array}{l} \widehat{{\bf{y}}}_{s}(s,t) = (1+a_{s})\widehat{{\bf{t}}}+(a\widehat{ \kappa }-\widehat{\tau }b)\widehat{{\bf{n}}}+ b_{s}\widehat{{\bf{b}}} , \\ \widehat{{\bf{y}}}_{t}(s,t) = a_{t}\widehat{{\bf{t}}}{\bf{+}}b_{t} \widehat{{\bf{b}}}, \end{array} \right \} \end{equation} | (3.3) |
and
\begin{equation} \widehat{{\bf{N}}}{\bf{(}}s,t): = \widehat{{\bf{y}}}_{s}\times \widehat{ {\bf{y}}}_{t} = \left( a\widehat{\kappa }-\widehat{\tau }b\right) b_{t} \widehat{{\bf{t}}}+\left[ -(1+a_{s})b_{t}+b_{s}a_{t}\right] \widehat{ {\bf{n}}}{\bf{-}}\left( a\widehat{\kappa }-\widehat{\tau }b\right) a_{t} \widehat{{\bf{b}}}. \end{equation} | (3.4) |
Since \widehat{{\boldsymbol{\alpha }}}(s) is an isoparametric on M , there exists a value t = t_{0}\in \lbrack 0, T] such that \widehat{{\bf{y}}} (s, t_{0}) = \widehat{{\boldsymbol{\alpha }}}(s) , that is,
\begin{equation} a(s,t_{0}) = b(s,t_{0}) = 0,\;a_{s}(s,t_{0}) = b_{s}(s,t_{0}) = 0. \end{equation} | (3.5) |
Thus, when t = t_{0} , i.e., over \widehat{{\boldsymbol{\alpha }}}(s) , we have
\begin{equation} \widehat{{\bf{N}}}{\bf{(}}s,t_{0}) = -b_{t}\widehat{{\bf{n}}}(s). \end{equation} | (3.6) |
Coincidence of the rectifying plane of \widehat{{\boldsymbol{\alpha }}}(s) with the tangent plane of the surface \widehat{M} identifies the curve as a geodesic curve. Then from Eqs (3.2)–(3.6), we get the following theorem.
Theorem 3.1. The surface family pair \{ M , \widehat{M} \} interpolate Bertrand pair \{ {\boldsymbol{\alpha }}(s) , \widehat{{\boldsymbol{ \alpha }}}(s) \} as mutual geodesic curves if and only if
\begin{equation} \left. \begin{array}{l} a(s,t_{0}) = b(s,t_{0}) = 0,\ \\ b_{t}(s,t_{0})\neq 0,\ 0\leq t_{0}\leq T,\ \ 0\leq s\leq L. \end{array} \right \} \end{equation} | (3.7) |
As in [8], for the intents of facilitation and inspection, we also address the case when the marching-scale functions a(s, t) , and b(s, t) can be display into two factors:
\begin{equation} \begin{array}{c} a(s,t) = l(s)A(t), \\ b(s,t) = m(s)B(t). \end{array} \end{equation} | (3.8) |
Here l({s}) , m({s}), A(t) and B(t) are C^{1} functions are not identically vanish. Then, from Theorem 3.1, we gain
Corollary 3.1. The surface family pair \{ M , \widehat{M} \} interpolate Bertrand pair \{ {\boldsymbol{\alpha }}(s) , \widehat{{\boldsymbol{ \alpha }}}(s) \} as mutual geodesic curves if and only if
\begin{equation} \left. \begin{array}{l} A(t_{0}) = B(t_{0}) = 0,\ \ l(s) = const.\neq 0,\;m(s) = const.\neq 0, \\ \frac{dB(t_{0})}{dt} = const.\neq 0,\;0\leq t_{0}\leq T,\ \ 0\leq s\leq L. \end{array} \right \} \end{equation} | (3.9) |
In Eq (2.5), if \psi = 0 and \psi = \pi /2 then the pair \{ M , \widehat{ M} \} are named oriented pair, and right pair, respectively. Further to acquire \{ M , \widehat{M} \}, interpolate Bertrand pair \{ {\boldsymbol{\alpha }} (s) , \widehat{{\boldsymbol{\alpha }}}(s) \}, we can first design the marching-scale functions in Eq (3.9), and then use them to Eqs (3.1) and (3.2) to derive the parameterization. For suitability in practice, the a(s, t) , and b(s, t) can be moreover constrained to be in extra limited forms and still possess sufficient degrees of freedom to specify large family pair interpolate Bertrand pair \{ {\boldsymbol{\alpha }}(s) , \widehat{ {\boldsymbol{\alpha }}}(s) \} as mutual geodesic curves. Therefore, let us assume that a(s, t) , and b(s, t) can be displayed two different forms:
(1) If we choose
\begin{equation} \left \{ \begin{array}{c} a(s,t) = \underset{k = 1}{\overset{p}{\Sigma }}a_{1k}l(s)^{k}A(t)^{k}, \\ b(s,t) = \underset{k = 1}{\overset{p}{\Sigma }}b_{1k}m(s)^{k}B(t)^{k}. \end{array} \right. \end{equation} | (3.10) |
Thus, we can simply express the sufficient condition for which the \{ {\boldsymbol{\alpha }}(s) , \widehat{{\boldsymbol{\alpha }}}(s) \} are geodesic curves on the surface family pair \{ M , \widehat{M} \} as
\begin{equation} \left \{ \begin{array}{l} A(t_{0}) = B(t_{0}) = 0, \\ b_{11}\neq 0,\;m(s)\neq 0{\rm{, \;and }}\;\frac{dB(t_{0})}{dt} = const.\neq 0, \end{array} \right. \end{equation} | (3.11) |
where l(s), m(s), A(t), B(t) \in C^{1} , a_{ij} , b_{ij}\in \mathbb{R} (i = 1, 2;j = 1, 2, ..., p) and l(s) , and m(s) are not identically zero.
(2) If we choose
\begin{equation} \left \{ \begin{array}{c} a(s,t) = f(\underset{k = 1}{\overset{p}{\Sigma }}a_{1k}l^{k}(s)A^{k}(t)), \\ b(s,t) = g(\underset{k = 1}{\overset{p}{\Sigma }}b_{1k}m^{k}(s)B^{k}(t)), \end{array} \right. \end{equation} | (3.12) |
then
\begin{equation} \left \{ \begin{array}{l} A(t_{0}) = B(t_{0}) = f(0) = g(0) = 0, \\ b_{11}\neq 0,\;\frac{dB(t_{0})}{dt} = const\neq 0,\ m(s)\neq 0,\; g^{^{\prime }}(0)\neq 0, \end{array} \right. \end{equation} | (3.13) |
where l(s), m(s), A(t), B(t)\in C^{1} , a_{ij} , b_{ij}\in \mathbb{R} (i = 1, 2;j = 1, 2, ..., p) and l(s) , and m(s) are not identically zero.
Now, we are dealing with and constructing some representative examples to verify the approach. They also serve to confirm the correctness of the formulae obtained above.
Example 3.1. If {\bf{q}}_{0} = (0, 0, 0), \ {\bf{q}} _{1} = (0, 1, 1) and {\bf{q}}_{2} = (1, 2, 0) are points in the Euclidean 3-space \mathbb{E}^{3} , then the quadratic Bézier curve can be specified as
\begin{equation*} {\boldsymbol{\alpha }}(r) = b_{0}(r){\bf{q}}_{0}+b_{1}(r){\bf{q}}_{1}+b_{2}(r) {\bf{q}}_{2},\ 0\leq r\leq 1, \end{equation*} |
where
\begin{equation*} b_{0}(r) = (1-r)^{2},\ b_{1}(r) = 2r(1-r),\ b_{2}(r) = r^{2}, \end{equation*} |
are the blending functions of the curve {\boldsymbol{\alpha }}(r) . It is easy to show that
\begin{equation*} \kappa (r) = \frac{1}{2}\sqrt{\frac{6}{5r^{2}-4r+2}},\ \tau (r) = 0. \end{equation*} |
After simple computation, we get
\begin{equation*} {\bf{t}}(r) = \frac{{\bf{(}}r,1,1-2r)}{\rho },\ {\bf{n}}(r) = \frac{\left( 2(1-r),2-5r,-(2+r)\right) }{\sqrt{6}\rho },\ {\bf{b}}(r) = (-\frac{2}{\sqrt{6 }},\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}), \end{equation*} |
where \rho (r) = \sqrt{5r^{2}-4r+2} . Choosing a(r, t) = -4rt , b(r, t) = -t , \gamma \neq 0 , and t_{0} = 0 . Obviously, Eq (3.9) is satisfied, and the parametric surface specified by Eq (3.1) is
\begin{equation*} M:{\bf{y}}(r,t) = \left( r^{2},2r,2r-2r^{2}\right) +t\left( -4r,0,-1\right) \left( \begin{array}{lll} \frac{r}{\rho } & \frac{1}{\rho } & \frac{1-2r}{\rho } \\ \frac{2(1-r)}{\sqrt{6}\rho } & \frac{2-5r}{\sqrt{6}\rho } & \frac{-(2+r)}{ \sqrt{6}\rho } \\ -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{array} \right) . \end{equation*} |
Let f = \sqrt{6} in Eq (2.7), we get
\begin{equation*} \widehat{{\boldsymbol{\alpha }}}(r) = (r^{2}-\frac{2r}{\rho },2r-\frac{(2-5r)}{\rho } ,2r(1-r)-\frac{(2+r)}{\rho }). \end{equation*} |
Via Eq (2.5), we find
\begin{eqnarray*} \widehat{{\bf{t}}} & = &\left( \begin{array}{l} t_{11} \\ t_{12} \\ t_{13} \end{array} \right) = \left( \begin{array}{l} \frac{r}{\rho }\cos \psi -\frac{2}{\sqrt{6}}\sin \psi \\ \frac{1}{\rho }\cos \psi +\frac{1}{\sqrt{6}}\sin \psi \\ \frac{1-2r}{\rho }\cos \psi +\frac{1}{\sqrt{6}}\sin \psi \end{array} \right) , \\ && \\ \widehat{{\bf{b}}} & = &\left( \begin{array}{l} b_{11} \\ b_{12} \\ b_{13} \end{array} \right) = \left( \begin{array}{l} -\frac{r}{\rho }\sin \psi -\frac{2}{\sqrt{6}}\cos \psi \\ -\frac{1}{\rho }\sin \psi +\frac{1}{\sqrt{6}}\cos \psi \\ \ \ \ \ \ \ \ -\frac{(1-2r)}{\rho }\sin \psi +\frac{1}{\sqrt{6}}\cos \psi \end{array} \right) . \end{eqnarray*} |
Then, we have
\begin{equation*} \widehat{M}:\widehat{{\bf{y}}}(r,t) = (r^{2}-\frac{2r}{\rho },2r+\frac{2-3r}{ \rho },2r-2r^{2}-\frac{(2+r)}{\rho })+t\left( -4r,0,-1\right) \left( \begin{array}{lll} t_{11} & t_{12} & t_{13} \\ 0 & 1 & 0 \\ b_{11} & b_{12} & b_{13} \end{array} \right) . \end{equation*} |
For \beta = \gamma = -1 the oriented pair, and the right pair, respectively, are shown in Figures 1 and 2, where 0\leq r\leq 1 , and -15\leq t\leq 15 .
Example 3.2. Given a helix
\begin{equation*} {\boldsymbol{\alpha }}(s) = \frac{1}{\sqrt{2}}\left( \cos s,\sin s,s\right) ,\ 0\leq s\leq 2\pi . \end{equation*} |
The Serret-Frenet frame is
\begin{equation*} {\bf{t}}(s) = \frac{1}{\sqrt{2}}(-\sin s,\cos s,1),\ {\bf{n}}(s) = (-\cos s,-\sin s,0),{\bf{b}}(s) = \frac{1}{\sqrt{2}}(\sin s,-\cos s,1). \end{equation*} |
Then, the parametric surface defined by Eq (3.1) is
\begin{equation*} M:{\bf{y}}(s,t) = \frac{1}{\sqrt{2}}\left( \cos s,\sin s,s\right) +\left( a(s,t),0,b(s,t)\right) \left( \begin{array}{lll} \frac{-\sin s}{\sqrt{2}} & \frac{\cos s}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\cos s & -\sin s & 0 \\ \frac{\sin s}{\sqrt{2}} & \frac{-\cos s}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right) . \end{equation*} |
Let f = \sqrt{2} in Eq (2.7), we get
\begin{equation*} \widehat{{\boldsymbol{\alpha }}}(s) = \frac{1}{\sqrt{2}}\left( -\cos s,-\sin s,s\right) ,\ 0\leq s\leq 2\pi . \end{equation*} |
Via Eq (2.5), we find
\begin{eqnarray*} \widehat{{\bf{t}}} & = &\left( \begin{array}{l} t_{11} \\ t_{12} \\ t_{13} \end{array} \right) = \left( \begin{array}{l} \frac{1}{\sqrt{2}}(-\cos \psi +\sin \psi )\sin s \\ \frac{1}{\sqrt{2}}(\cos \psi -\sin \psi )\cos s \\ \frac{1}{\sqrt{2}}(\cos \psi +\sin \psi ) \end{array} \right) , \\ && \\ \widehat{{\bf{b}}} & = &\left( \begin{array}{l} b_{11} \\ b_{12} \\ b_{13} \end{array} \right) = \left( \begin{array}{l} \frac{1}{\sqrt{2}}(\sin \psi +\cos \psi )\sin s \\ \frac{1}{\sqrt{2}}(-\sin \psi -\cos \psi )\cos s \\ \frac{1}{\sqrt{2}}(\cos \psi -\sin \psi ) \end{array} \right) . \end{eqnarray*} |
Then, we have
\begin{equation*} \widehat{M}:\widehat{{\bf{y}}}(s,t) = \frac{1}{\sqrt{2}}\left( -\cos s,-\sin s,s\right) +\left( a(s,t),0,b(s,t)\right) \left( \begin{array}{lll} t_{11} & t_{12} & t_{13} \\ -\cos s & -\sin s & 0 \\ b_{11} & b_{12} & b_{13} \end{array} \right) . \end{equation*} |
If a(s, t) = \sin t , b(s, t) = 1-\cos t , t_{0} = 0 , the oriented pair, and the right pair, respectively, are shown in Figures 3 and 4, where 0\leq s, t\leq 2\pi .
Example 3.3. Let
\begin{equation*} {\boldsymbol{\alpha }}(s) = \left( \cos s,\sin s,0\right) ,\ 0\leq s\leq 2\pi . \end{equation*} |
Then,
\begin{equation*} {\bf{t}}(s) = (-\sin s,\cos s,0),\ {\bf{n}}(s) = (-\cos s,-\sin s,0),{\bf{ b}}(s) = (0,0,1). \end{equation*} |
Then, the surface specified by Eq (3.1) is
\begin{equation*} M:{\bf{y}}(s,t) = \left( \cos s,\sin s,0\right) +\left( a(s,t),0,b(s,t)\right) \left( \begin{array}{lll} -\sin s & \cos s & 0 \\ -\cos s & -\sin s & 0 \\ 0 & 0 & 1 \end{array} \right) . \end{equation*} |
Let f = 2 in Eq (2.7), we get
\begin{equation*} \widehat{{\boldsymbol{\alpha }}}(s) = \left( -\cos s,-\sin s,0\right) ,\ 0\leq s\leq 2\pi . \end{equation*} |
Similarly, we find
\begin{equation*} \widehat{{\bf{t}}}(s) = (-\cos \psi \sin s,\cos \psi \cos s,\sin \psi ){\rm{ ,\; }}\widehat{{\bf{b}}}(s) = (\sin \psi \sin s,-\sin \psi \cos s,\cos \psi ) {\rm{,}} \end{equation*} |
and
\begin{equation*} \widehat{M}:\widehat{{\bf{y}}}(s,t) = \left( -\cos s,-\sin s,0\right) +\left( a(s,t),0,b(s,t)\right) \left( \begin{array}{lll} t_{11} & t_{12} & t_{13} \\ -\cos s & -\sin s & 0 \\ b_{11} & b_{12} & b_{13} \end{array} \right) . \end{equation*} |
If we choose
\begin{equation*} a(s,t) = (1+\sin t)+\overset{4}{\underset{k = 2}{\Sigma }}a_{1k}(1+\sin t)^{k}, \;b(s,t) = \cos t+\overset{4}{\underset{k = 2}{\Sigma }}b_{1k}\cos ^{k}t, \end{equation*} |
where t_{0} = 0 , \frac{3\pi }{2} , a_{1k} , b_{1k}\in \mathbb{R} , and 0\leq t\leq 2\pi , then Eq (3.11) is satisfied. Therefore, the oriented pair, and the right pair, respectively, are shown in Figure 5 and 6, where 0\leq s\leq \pi , and 0\leq t\leq 5 .
A ruled surface is a special surface created by a continuous movable of a line (ruling) on a curve, which acts as the base curve. In this subsection, we will address the construction of ruled surface family pair with Bertrand pair as mutual geodesic curves. For the ease of search, let us consider that \widehat{{\boldsymbol{\alpha }}}(s) be a unit speed curve. Suppose that \widehat{{\bf{y}}}(s, t) is a ruled surface with the base \widehat{ {\boldsymbol{\alpha }}}(s) and \widehat{{\boldsymbol{\alpha }}}(s) is also an isoparametric curve of \widehat{{\bf{y}}}(s, t) , then there exists t_{0} such that \widehat{{\bf{y}}}(s, t_{0}) = \widehat{{\boldsymbol{\alpha }}}(s) . This follows that the surface can be specified as
\begin{equation*} \widehat{M}:\widehat{{\bf{y}}}(s,t)-\widehat{{\bf{y}}}(s,t_{0}) = (t-t_{0}) \widehat{{\bf{e}}}(s){\rm{, \;with }}\;0\leq s\leq L,\;t,\ t_{0}\in \lbrack 0,T], \end{equation*} |
where \widehat{{\bf{e}}}(s) is a unit vector specify the orientation of the rulings. Via the Eq (3.2), we have
\begin{equation} (t-t_{0})\widehat{{\bf{e}}}(s) = a(s,t)\widehat{{\bf{t}}}(s){\bf{+}} b(s,t)\widehat{{\bf{b}}}{\bf{(}}s),\ 0\leq s\leq L,\ {\rm{with}}\ t,\ t_{0}\in \lbrack 0,T], \end{equation} | (3.14) |
which is a system of two equations with two unknown functions a(s, t) , and b(s, t) . To solve the functions a(s, t) , and b(s, t) we have
\begin{equation} \begin{array}{c} a(s,t) = (t-t_{0})\det (\widehat{{\bf{e}}},\widehat{{\bf{n}}},\widehat{ {\bf{b}}}), \\ b(s,t) = (t-t_{0})\det (\widehat{{\bf{e}}},\widehat{{\bf{t}}},\widehat{ {\bf{n}}}). \end{array} \end{equation} | (3.15) |
Equation (3.15) is exactly the necessary and sufficient conditions for {\bf{ y}}(s, t) is a ruled surface.
First, we need to examine if \widehat{{\boldsymbol{\alpha }}}(s) is also geodesic on \widehat{M} by employing the Theorem 3.1. It is apparent that in this case, these follows that
\begin{equation} \det (\widehat{{\bf{e}}},\widehat{{\bf{t}}},\widehat{{\bf{n}}})\neq 0. \end{equation} | (3.16) |
Then, at any point on \widehat{{\boldsymbol{\alpha }}}(s) , the ruling orientation \widehat{{\bf{e}}} should be in the rectifying plane. Also, the \widehat{{\bf{e}}} , and \widehat{{\bf{t}}} must not be parallel. This follows that
\begin{equation} \widehat{{\bf{e}}}(s) = x(s)\widehat{{\bf{t}}}(s)+y(s)\widehat{{\bf{b}}} (s){\rm{, \;}}0\leq s\leq L. \end{equation} | (3.17) |
Substituting Eq (3.17) into the Eq (3.15), we attain
\begin{equation} t \ x(s) = a(s,t){\rm{, \;and }}\;t \ y(s) = b(s,t){\rm{,\; with }}\;y(s)\neq 0. \end{equation} | (3.18) |
Then, the ruled surface family with the mutual geodesic \widehat{{\boldsymbol{ \alpha }}}(s) can be specified as
\begin{equation} \widehat{M}:\widehat{{\bf{y}}}(s,t) = \widehat{{\boldsymbol{\alpha }}}(s)+t \ (x(s) \widehat{{\bf{t}}}(s)+y(s)\widehat{{\bf{b}}}(s)),\ 0\leq s\leq L,\ 0\leq t\leq T, \end{equation} | (3.19) |
where x(s), y(s)\neq 0 , \ 0\leq s\leq L, and \ 0\leq t\leq T . However, the normal vector to \widehat{M} along the curve \widehat{ {\boldsymbol{\alpha }}}(s) is
\begin{equation} \widehat{{\bf{N}}}{\bf{(}}s,t_{0}) = -y(s)\widehat{{\bf{n}}}(s), \end{equation} | (3.20) |
which show that \widehat{{\boldsymbol{\alpha }}}(s) is a geodesic curve on \widehat{M} . Then the following theorem can be stated.
Theorem 3.2. The ruled surface family pair \{ M , \widehat{M} \} interpolate Bertrand pair \{ {\boldsymbol{\alpha }}(s) , \widehat{ {\boldsymbol{\alpha }}}(s) \} as mutual geodesic curves if and only if there exist a parameter t_{0}\in \lbrack 0, T] , and the functions x(s), y(s)\neq 0 , so that \widehat{M} , and M , respectively, parametrized by Eq (3.19), and
\begin{equation} M:{\bf{y}}(s,t) = {\boldsymbol{\alpha }}(s)+t \ (x(s){\bf{t}}(s)+y(s){\bf{b}} (s)),\ 0\leq s\leq L,\ 0\leq t\leq T. \end{equation} | (3.21) |
It must be pointed out in Eqs (3.19) and (3.21), there exist two geodesic curves crossing during every point on the curves \widehat{{\boldsymbol{\alpha }}} (s) ( {\boldsymbol{\alpha }}(s)) one is \widehat{{\boldsymbol{\alpha }}} itself and the other is a line in the orientation \widehat{{\bf{e}}}(s) as given in Eq (3.17). Every constituent of the isoparametric ruled surface family with the mutual geodesic \widehat{{\boldsymbol{\alpha }}} is established by two set functions x(s), y(s)\neq 0 .
Example 3.4. In view of Example 3.1, for x(r) = y(r) = -1 , the ruled oriented pair \{ M , \widehat{M} \}, and the ruled right pair \{ M , \widehat{M} \}, respectively, are shown in Figures 7 and 8, where 0\leq r\leq 1 , and -15\leq t\leq 15 .
Example 3.5. In view of Example 3.2, for x(s) = y(s) = 1 , the ruled oriented pair \{ M , \widehat{M} \}, and the ruled right pair \{ M , \widehat{M} \}, respectively, are shown in Figures 9 and 10, where 0\leq s\leq 2\pi , and -1\leq t\leq 1 .
Example 3.6. In view of Example 3.3, for x(s) = y(s) = s , the ruled oriented pair \{ M , \widehat{M} \}, and the ruled right pair \{ M , \widehat{M} \}, respectively, are shown in Figures 11 and 12, where 0\leq s\leq 2\pi , and -1\leq t\leq 1 .
In this work, we constructed the surface family pair and ruled surface family pair having Bertrand pair as mutual geodesic curve in Euclidean 3-space \mathbb{E}^{3} . Meanwhile, some curves are selected to organize the surface family pair and ruled surface family pair which have the Bertrand pair \{ \widehat{{\boldsymbol{\alpha }}}(s) , {\boldsymbol{\alpha }}(s) \} as mutual geodesic curves. Hopefully, these results will be advantageous to the work in computer-aided manufacture and those exploring the manufacturing. There are several opportunities for further work. The authors plans to register the study in different spaces and examining the classification of singularities.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to acknowledge the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R337), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
The authors declare that there is no conflict of interest regarding the publication of this paper.
[1] | M. Do Carmo, Differential geometry of curves and surfaces, Englewood Cliffs: Prentice-Hall, 1976. |
[2] | M. Spivak, A comprehensive introduction to differential geometry, 2 Eds., Houston: Publish or Perish, 1979. |
[3] |
R. Brond, D. Jeulin, P. Gateau, J. Jarrin, G. Serpe, Estimation of the transport properties of polymer composites by geodesic propagation, J. Microsc., 176 (1994), 167–177. http://dx.doi.org/10.1111/j.1365-2818.1994.tb03511.x doi: 10.1111/j.1365-2818.1994.tb03511.x
![]() |
[4] |
S. Bryson, Virtual spacetime: an environment for the visualization of curved spacetimes via geodesic flows, Proceedings of Visualization, 1992,291–298. http://dx.doi.org/10.1109/VISUAL.1992.235196 doi: 10.1109/VISUAL.1992.235196
![]() |
[5] |
R. Haw, An application of geodesic curves to sail design, Comput. Graph. Forum, 4 (1985), 137–139. http://dx.doi.org/10.1111/j.1467-8659.1985.tb00203.x doi: 10.1111/j.1467-8659.1985.tb00203.x
![]() |
[6] |
R. Haw, F. Munchmeyer, Geodesic curves on patched polynomial surfaces, Comput. Graph. Forum, 2 (1983), 225–232. http://dx.doi.org/10.1111/j.1467-8659.1983.tb00151.x doi: 10.1111/j.1467-8659.1983.tb00151.x
![]() |
[7] |
P. Agarwal, S. Har-Peled, M. Sharir, K. Varadarajan, Approximating shortest paths on a convex polytope in three dimensions, J. ACM, 44 (1997), 567–584. http://dx.doi.org/10.1145/263867.263869 doi: 10.1145/263867.263869
![]() |
[8] |
R. Goldenberg, R. Kimmel, E. Rivlin, M. Rudzsky, Fast geodesic active contours, IEEE Trans. Image Process., 10 (2001), 1467–1475. http://dx.doi.org/10.1109/83.951533 doi: 10.1109/83.951533
![]() |
[9] |
S. Har-Peled, Approximate shortest-path and geodesic diameter on convex polytopes in three dimensions, Discrete Comput. Geom., 21 (1999), 217–231. http://dx.doi.org/10.1007/PL00009417 doi: 10.1007/PL00009417
![]() |
[10] | M. Novotni, R. Klein, Gomputing geodesic distances on triangular meshes, Journal of WSCG, 10 (2002), 341–347. |
[11] |
G. Wang, K. Tang, C. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comput. Aided Design, 36 (2004), 447–459. http://dx.doi.org/10.1016/S0010-4485(03)00117-9 doi: 10.1016/S0010-4485(03)00117-9
![]() |
[12] |
H. Zhao, G. Wang, A new method for designing a developable surface utilizing the surface pencil through a given curve, Prog. Nat. Sci., 18 (2008), 105–110. http://dx.doi.org/10.1016/j.pnsc.2007.09.001 doi: 10.1016/j.pnsc.2007.09.001
![]() |
[13] |
C. Li, R. Wang, C. Zhu, Design and G1 connection of developable surfaces through Bézier geodesics, Appl. Math. Comput., 218 (2011), 3199–3208. http://dx.doi.org/10.1016/j.amc.2011.08.057 doi: 10.1016/j.amc.2011.08.057
![]() |
[14] |
E. Kasap, F. Talay Akyildiz, K. Orbay, A generalization of surfaces family with common spatial geodesic, Appl. Math. Comput., 201 (2008), 781–789. http://dx.doi.org/10.1016/j.amc.2008.01.016 doi: 10.1016/j.amc.2008.01.016
![]() |
[15] |
C. Li, R. Wang, C. Zhu, Parametric representation of a surface pencil with a common line of curvature, Comput. Aided Design, 43 (2011), 1110–1117. http://dx.doi.org/10.1016/j.cad.2011.05.001 doi: 10.1016/j.cad.2011.05.001
![]() |
[16] |
C. Li, R. Wang, C. Zhu, An approach for designing a developable surface through a given line of curvature, Comput. Aided Design, 45 (2013), 621–627. http://dx.doi.org/10.1016/j.cad.2012.11.001 doi: 10.1016/j.cad.2012.11.001
![]() |
[17] |
E. Bayram, F. Guler, E. Kasap, Parametric representation of a surface pencil with a common asymptotic curve, Comput. Aided Design, 44 (2012), 637–643. http://dx.doi.org/10.1016/j.cad.2012.02.007 doi: 10.1016/j.cad.2012.02.007
![]() |
[18] |
Y. Liu, G. Wang, Designing developable surface pencil through given curve as its common asymptotic curve (Chinese), Journal of Zhejiang University (Engineering Science), 47 (2013), 1246–1252. http://dx.doi.org/10.3785/j.issn.1008-973X.2013.07.017 doi: 10.3785/j.issn.1008-973X.2013.07.017
![]() |
[19] | G. Atalay, E. Kasap, Surfaces family with common Smarandache geodesic curve, J. Sci. Arts, 17 (2017), 651–664. |
[20] |
G. Atalay, E. Kasap, Surfaces family with common Smarandache geodesic curve according to Bishop frame in Euclidean space, Mathematical Sciences and Applications E-Notes, 4 (2016), 164–174. http://dx.doi.org/10.36753/mathenot.421425 doi: 10.36753/mathenot.421425
![]() |
[21] |
E. Bayram, M. Bilici, Surface family with a common involute asymptotic curve, Int. J. Geom. Methods M., 13 (2016) 1650062. http://dx.doi.org/10.1142/S0219887816500626. doi: 10.1142/S0219887816500626
![]() |
[22] |
F. Güler, E. Bayram, E. Kasap, Offset surface pencil with a common asymptotic curve, Int. J. Geom. Methods M., 15 (2018), 1850195. http://dx.doi.org/10.1142/S0219887818501955 doi: 10.1142/S0219887818501955
![]() |
[23] |
G. Atalay, Surfaces family with a common Mannheim asymptotic curve, Journal of Applied Mathematics and Computation, 2 (2018), 143–154. http://dx.doi.org/10.26855/jamc.2018.04.004 doi: 10.26855/jamc.2018.04.004
![]() |
[24] |
G. Atalay, Surfaces family with a common Mannheim geodesic curve, Journal of Applied Mathematics and Computation, 2 (2018), 155–165. http://dx.doi.org/10.26855/jamc.2018.04.005 doi: 10.26855/jamc.2018.04.005
![]() |
[25] |
R. Abdel-Baky, N. Alluhaib, Surfaces family with a common geodesic curve in Euclidean 3-Space \mathbb{E}^{3}, International Journal of Mathematical Analysis, 13 (2019), 433–447. http://dx.doi.org/10.12988/ijma.2019.9846 doi: 10.12988/ijma.2019.9846
![]() |
[26] |
J. Watson, F. Crick, Molecular structures of nucleic acids, Nature, 171 (1953), 737–738. http://dx.doi.org/10.1038/171737a0 doi: 10.1038/171737a0
![]() |
[27] |
A. Jain, G. Wang, K. Vasquez, DNA triple helices: biological consequences and the therapeutic potential, Biochemie, 90 (2008), 1117–1130. http://dx.doi.org/10.1016/j.biochi.2008.02.011 doi: 10.1016/j.biochi.2008.02.011
![]() |
[28] |
L. Jäntschi, The Eigenproblem translated for alignment of molecules, Symmetry, 11 (2019), 1027. http://dx.doi.org/10.3390/sym11081027 doi: 10.3390/sym11081027
![]() |
[29] | L. Jäntschi, S. Bolboaca, Study of geometrical shaping of linear chained polymers stabilized as helixes, Stud. UBB-Chem., 61 (2016), 123–136. |
[30] |
S. Papaioannou, D. Kiritsis, An application of Bertrand curves and surface to CAD/CAM, Comput. Aided Design, 17 (1985), 348–352. http://dx.doi.org/10.1016/0010-4485(85)90025-9 doi: 10.1016/0010-4485(85)90025-9
![]() |
[31] |
B. Ravani, T. Ku, Bertrand offsets of ruled and developable surfaces, Comput. Aided Design, 23 (1991), 145–152. http://dx.doi.org/10.1016/0010-4485(91)90005-H doi: 10.1016/0010-4485(91)90005-H
![]() |
1. | Fatemah Mofarreh, Timelike Surface Couple with Bertrand Couple as Joint Geodesic Curves in Minkowski 3-Space, 2024, 16, 2073-8994, 732, 10.3390/sym16060732 | |
2. | Gülnur Şaffak Atalay, A new approach to special curved surface families according to modified orthogonal frame, 2024, 9, 2473-6988, 20662, 10.3934/math.20241004 |