The Pontryagin dual of the multiplicative group of positive rational numbers is constructed. Then we study its topological generators and representations.
Citation: Chaochao Sun, Yuanbo Liu. The Pontryagin dual of the multiplicative group of positive rational numbers[J]. AIMS Mathematics, 2023, 8(9): 20351-20360. doi: 10.3934/math.20231037
The Pontryagin dual of the multiplicative group of positive rational numbers is constructed. Then we study its topological generators and representations.
[1] | A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta function, Sel. Math., 5 (1999), 29. https://doi.org/10.1007/s000290050042 doi: 10.1007/s000290050042 |
[2] | S. M. Gonek, H. L. Montgomery, Kronecker's approximation theorem, Indag. Math., 27 (2016), 506–523. https://doi.org/10.1016/j.indag.2016.02.002 doi: 10.1016/j.indag.2016.02.002 |
[3] | E. Hewitt, K. A. Ross, Abstract Harmonic Analysis-Volume I: Structure of Topological Groups Integration Theory Group Representations, Berlin, Heidelberg: Springer, 1963. |
[4] | J. Neukirch, A. Schmidt, K. Wingberg, Cohomology of Number Fields, 2 Eds., Springer, 2013. |
[5] | S. Hartman, Remarks on equidistribution on non-compact groups, Compos. Math., 16 (1964), 66–71. |
[6] | P. R. Halmos, H. Samelson, On monothetic groups, Proc. Natl. Acad. Sci. USA, 28 (1942), 254–258. https://doi.org/10.1073/pnas.28.6.254 doi: 10.1073/pnas.28.6.254 |
[7] | I. I. Shafarevich, Basic Notation of Algebra, Higher Education Press, 2017. |
[8] | B. Jessen, The theory of integration in a space of an infinite number of dimensions, Acta Math., 63 (1934), 249–323. https://doi.org/10.1007/BF02547355 doi: 10.1007/BF02547355 |