Research article

Asymptotic synchronization analysis of fractional-order octonion-valued neural networks with impulsive effects

  • Received: 21 August 2022 Revised: 28 September 2022 Accepted: 07 October 2022 Published: 26 October 2022
  • MSC : 34A08, 34A37, 34K24, 34K25

  • This paper deals with a class of fractional-order octonion-valued neural networks (FOOVNNs) with impulsive effects. Firstly, although the multiplication of octonion numbers does not satisfy the commutativity and associativity, we don't need to separate an octonion-valued system into eight real-valued systems. Secondly, by applying the appropriate Lyapunov function, and inequality techniques, we obtain the global asymptotical synchronization of FOOVNNs. Finally, we give two illustrative examples to illustrate the feasibility of the proposed method.

    Citation: Jin Gao, Lihua Dai. Asymptotic synchronization analysis of fractional-order octonion-valued neural networks with impulsive effects[J]. AIMS Mathematics, 2023, 8(1): 1975-1994. doi: 10.3934/math.2023102

    Related Papers:

  • This paper deals with a class of fractional-order octonion-valued neural networks (FOOVNNs) with impulsive effects. Firstly, although the multiplication of octonion numbers does not satisfy the commutativity and associativity, we don't need to separate an octonion-valued system into eight real-valued systems. Secondly, by applying the appropriate Lyapunov function, and inequality techniques, we obtain the global asymptotical synchronization of FOOVNNs. Finally, we give two illustrative examples to illustrate the feasibility of the proposed method.



    加载中


    [1] M. Alfaro-Ponce, A. Argüelles, I. Chairez, Pattern recognition for electroencephalographic signals based on continuous neural networks, Neural Networks, 79 (2016), 88–96. https://doi.org/10.1016/j.neunet.2016.03.004 doi: 10.1016/j.neunet.2016.03.004
    [2] T. Liang, Z. Liu, W. Wang, Pattern recognition of decorative elements based on neural network, J. Intell. Fuzzy Syst., 39 (2020), 8665–8673. https://doi.org/10.3233/jifs-189262 doi: 10.3233/jifs-189262
    [3] A. Chakravarty, J. Mentink, S. Semin, T. Rasing, Training and pattern recognition by an opto-magnetic neural network, Appl. Phys. Lett., 120 (2022), 022403. https://doi.org/10.1063/5.0073280 doi: 10.1063/5.0073280
    [4] A. Azad, L. Wang, N. Guo, H. Tam, C. Lu, Signal processing using artificial neural network for BOTDA sensor system, Opt. Express, 24 (2016), 6769–6782. https://doi.org/10.1364/oe.24.006769 doi: 10.1364/oe.24.006769
    [5] D. Auge, J. Hille, E. Mueller, A. Knoll, A survey of encoding techniques for signal processing in spiking neural networks, Neural Process. Lett., 53 (2021), 4693–4710. https://doi.org/10.1007/s11063-021-10562-2 doi: 10.1007/s11063-021-10562-2
    [6] B. Traore, B. Kamsu-Foguem, F. Tangara, Deep convolution neural network for image recognition, Ecol. Inform., 48 (2018), 257–268. https://doi.org/10.1016/j.ecoinf.2018.10.002 doi: 10.1016/j.ecoinf.2018.10.002
    [7] Y. Li, R. Zhou, R. Xu, J. Luo, W. Hu, A quantum deep convolutional neural network for image recognition, Quantum Sci. Technol., 5 (2020), 044003. https://doi.org/10.1088/2058-9565/ab9f93 doi: 10.1088/2058-9565/ab9f93
    [8] T. Zheng, Q. Wang, Y. Shen, X. Ma, X. Lin, Batch covariance neural network for image recognition, Image Vision Comput., 122 (2022), 104446. https://doi.org/10.1016/j.imavis.2022.104446 doi: 10.1016/j.imavis.2022.104446
    [9] H. Wei, R. Li, C. Chen, Z. Tu, Stability analysis of fractional order complex-valued memristive neural networks with time delays, Neural Process. Lett., 45 (2017), 379–399. https://doi.org/10.1007/s11063-016-9531-0 doi: 10.1007/s11063-016-9531-0
    [10] Y. Ke, Finite-time stability of fractional order BAM neural networks with time delay, J. Discret. Math. Sci. C., 20 (2017), 681–693. https://doi.org/10.1080/09720529.2017.1339435 doi: 10.1080/09720529.2017.1339435
    [11] L. Zhang, Y. Yang, Stability analysis of fractional order Hopfield neural networks with optimal discontinuous control, Neural Process. Lett., 50 (2019), 581–593. https://doi.org/10.1007/s11063-019-10054-4 doi: 10.1007/s11063-019-10054-4
    [12] A. Pratap, R. Raja, J. Cao, C. Huang, M. Niezabitowski, O. Bagdasar, Stability of discrete-time fractional-order time-delayed neural networks in complex field, Math. Method. Appl. Sci., 44 (2021), 419–440. https://doi.org/10.1002/mma.6745 doi: 10.1002/mma.6745
    [13] C. Chen, S. Zhu, Y. Wei, C. Chen, Finite-time stability of delayed memristor-based fractional-order neural networks, IEEE T. Cybernetics, 50 (2020), 1607–1616. https://doi.org/10.1109/tcyb.2018.2876901 doi: 10.1109/tcyb.2018.2876901
    [14] S. Tyagi, S. Martha, Finite-time stability for a class of fractional-order fuzzy neural networks with proportional delay, Fuzzy Set. Syst., 381 (2020), 68–77. https://doi.org/10.1016/j.fss.2019.04.010 doi: 10.1016/j.fss.2019.04.010
    [15] N. Thanh, P. Niamsup, V. Phat, New results on finite-time stability of fractional-order neural networks with time-varying delay, Neural Comput. Appl., 33 (2021), 17489–17496. https://doi.org/10.1007/s00521-021-06339-2 doi: 10.1007/s00521-021-06339-2
    [16] F. Du, J. Lu, New criteria for finite-time stability of fractional order memristor-based neural networks with time delays, Neurocomputing, 421 (2021), 349–359. https://doi.org/10.1016/j.neucom.2020.09.039 doi: 10.1016/j.neucom.2020.09.039
    [17] Z. Yang, J. Zhang, J. Hu, J. Mei, New results on finite-time stability for fractional-order neural networks with proportional delay, Neurocomputing, 442 (2021), 327–336. https://doi.org/10.1016/j.neucom.2021.02.082 doi: 10.1016/j.neucom.2021.02.082
    [18] A. Pratap, R. Raja, C. Sowmiya, O. Bagdasar, J. Cao, G. Rajchakit, Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses, Neural Networks, 103 (2018), 128–141. https://doi.org/10.1016/j.neunet.2018.03.012 doi: 10.1016/j.neunet.2018.03.012
    [19] P. Anbalagan, R. Ramachandran, J. Cao, G. Rajchakit, C. Lim, Global robust synchronization of fractional order complex valued neural networks with mixed time varying delays and impulses, Int. J. Control Autom., 17 (2019), 509–520. https://doi.org/10.1007/s12555-017-0563-7 doi: 10.1007/s12555-017-0563-7
    [20] L. Zhang, Y. Yang, Finite time impulsive synchronization of fractional order memristive BAM neural networks, Neurocomputing, 384 (2020), 213–224. https://doi.org/10.1016/j.neucom.2019.12.056 doi: 10.1016/j.neucom.2019.12.056
    [21] C. Popa, Octonion-valued neural networks, In: A. Villa, P. Masulli, A. Pons Rivero, Artificial Neural Networks and Machine Learning–ICANN 2016, Lecture Notes in Computer Science, Cham: Springer, 2016,435–443. https://doi.org/10.1007/978-3-319-44778-0_51
    [22] C. Popa, Global asymptotic stability for octonion-valued neural networks with delay, In: F. Cong, A. Leung, Q. Wei, Advances in Neural Networks–ISNN 2017, Lecture Notes in Computer Science, Cham: Springer, 2017,439–448. https://doi.org/10.1007/978-3-319-59072-1_52
    [23] C. Popa, Exponential stability for delayed octonion-valued recurrent neural networks, In: I. Rojas, G. Joya, A. Catala, Advances in Computational Intelligence–IWANN 2017, Lecture Notes in Computer Science, Cham: Springer, 2017,375–385. https://doi.org/10.1007/978-3-319-59153-7_33
    [24] C. Popa, Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays, Neural Networks, 105 (2018), 277–293. https://doi.org/10.1016/j.neunet.2018.05.006 doi: 10.1016/j.neunet.2018.05.006
    [25] C. Popa, Global exponential stability of neutral-type octonion-valued neural networks with time-varying delays, Neurocomputing, 309 (2018), 117–133. https://doi.org/10.1016/j.neucom.2018.05.004 doi: 10.1016/j.neucom.2018.05.004
    [26] J. Wang, X. Liu, Global $\mu$-stability and finite-time control of octonion-valued neural networks with unbounded delays, arXiv, 12 (2020), 1950016. https://doi.org/10.48550/arXiv.2003.11330 doi: 10.48550/arXiv.2003.11330
    [27] S. Shishegar, R. Ghorbani, L. Saoud, S. Duchesne, G. Pelletier, Rainfall-runoff modelling using octonion-valued neural networks, Hydrolog. Sci. J., 66 (2021), 1857–1865. https://doi.org/10.1080/02626667.2021.1962885 doi: 10.1080/02626667.2021.1962885
    [28] U. Kandasamy, R. Rajan, Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays, Discrete Cont. Dyn. Syst.-Ser. S, 13 (2020), 2537–2559. https://doi.org/10.3934/dcdss.2020137 doi: 10.3934/dcdss.2020137
    [29] L. Zhang, Y. Yang, Bipartite synchronization analysis of fractional order coupled neural networks with hybrid control, Neural Process. Lett., 52 (2020), 1969–1981. https://doi.org/10.1007/s11063-020-10332-6 doi: 10.1007/s11063-020-10332-6
    [30] B. Zheng, C. Hu, J. Yu, H. Jiang, Finite-time synchronization of fully complex-valued neural networks with fractional-order, Neurocomputing, 373 (2020), 70–80. https://doi.org/10.1016/j.neucom.2019.09.048 doi: 10.1016/j.neucom.2019.09.048
    [31] M. Hui, N. Yao, H. Iu, R. Yao, L. Bai, Adaptive synchronization of fractional-order complex-valued neural networks with time-varying delays, IEEE Access, 10 (2022), 45677–45688. https://doi.org/10.1109/access.2022.3170091 doi: 10.1109/access.2022.3170091
    [32] W. Zhang, H. Zhang, J. Cao, H. Zhang, F. Alsaadi, A. Alsaedi, Global projective synchronization in fractional-order quaternion valued neural networks, Asian J. Control, 24 (2022), 227–236. https://doi.org/10.1002/asjc.2485 doi: 10.1002/asjc.2485
    [33] W. Zhang, H. Zhao, C. Sha, Y. Wang, Finite time synchronization of delayed quaternion valued neural networks with fractional order, Neural Process. Lett., 53 (2021), 3607–3618. https://doi.org/10.1007/s11063-021-10551-5 doi: 10.1007/s11063-021-10551-5
    [34] J. Xiao, J. Cao, J. Cheng, S. Zhong, S. Wen, Novel methods to finite-time Mittag-Leffler synchronization problem of fractional-order quaternion-valued neural networks, Inform. Sci., 526 (2020), 221–244. https://doi.org/10.1016/j.ins.2020.03.101 doi: 10.1016/j.ins.2020.03.101
    [35] H. Li, H. Jiang, J. Cao, Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete delays, Neurocomputing, 385 (2020), 211–219. https://doi.org/10.1016/j.neucom.2019.12.018 doi: 10.1016/j.neucom.2019.12.018
    [36] G. Narayanan, M. Syed Ali, M.Alam, G. Rajchakit, N. Boonsatit, P. Kuamr, et al., Adaptive fuzzy feedback controller design for finite-time Mittag-Leffler synchronization of fractional-order quaternion-valued reaction-diffusion fuzzy molecular modeling of delayed neural networks, IEEE Access, 9 (2021), 130862–130883. https://doi.org/10.1109/access.2021.3113915 doi: 10.1109/access.2021.3113915
    [37] C. Wang, H. Zhang, H. Zhang, W. Zhang, Globally projective synchronization for Caputo fractional quaternion-valued neural networks with discrete and distributed delays, AIMS Math., 6 (2021), 14000–14012. https://doi.org/10.3934/math.2021809 doi: 10.3934/math.2021809
    [38] H. Yan, Y. Qiao, L. Duan, J. Miao, New inequalities to finite-time synchronization analysis of delayed fractional-order quaternion-valued neural networks, Neural Comput. Appl., 34 (2022), 9919–9930. https://doi.org/10.1007/s00521-022-06976-1 doi: 10.1007/s00521-022-06976-1
    [39] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1998.
    [40] S. Liang, R. Wu, L. Chen, Adaptive pinning synchronization in fractional order uncertain complex dynamical networks with delay, Phys. A., 444 (2016), 49–62. https://doi.org/10.1016/j.physa.2015.10.011 doi: 10.1016/j.physa.2015.10.011
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1091) PDF downloads(71) Cited by(1)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog