We consider the shape derivative formula for a volume cost functional studied in previous papers where we used the Minkowski deformation and support functions in the convex setting. In this work, we extend it to some non-convex domains, namely the star-shaped ones. The formula happens to be also an extension of a well-known one in the geometric Brunn-Minkowski theory of convex bodies. At the end, we illustrate the formula by applying it to some model shape optimization problem.
Citation: Abdesslam Boulkhemair, Abdelkrim Chakib, Azeddine Sadik. On a shape derivative formula for star-shaped domains using Minkowski deformation[J]. AIMS Mathematics, 2023, 8(8): 19773-19793. doi: 10.3934/math.20231008
We consider the shape derivative formula for a volume cost functional studied in previous papers where we used the Minkowski deformation and support functions in the convex setting. In this work, we extend it to some non-convex domains, namely the star-shaped ones. The formula happens to be also an extension of a well-known one in the geometric Brunn-Minkowski theory of convex bodies. At the end, we illustrate the formula by applying it to some model shape optimization problem.
[1] | G. Allaire, Conception optimale de structures, Berlin: Springer, 2007. http://dx.doi.org/10.1007/978-3-540-36856-4 |
[2] | A. Boulkhemair, On a shape derivative formula in the Brunn-Minkowski theory, SIAM J. Control Optim., 55 (2017), 156–171. http://dx.doi.org/10.1137/15M1015844 doi: 10.1137/15M1015844 |
[3] | A. Boulkhemair, A. Chakib, On a shape derivative formula with respect to convex domains, J. Convex Anal., 21 (2014), 67–87. |
[4] | A. Boulkhemair, A. Chakib, Erratum: on a shape derivative formula with respect to convex domains, J. Convex Anal., 22 (2015), 901–903. |
[5] | A. Boulkhemair, A. Chakib, A. Nachaoui, A. Niftiyev, A. Sadik, On a numerical shape optimal design approach for a class of free boundary problems, Comput. Optim. Appl., 77 (2020), 509–537. http://dx.doi.org/10.1007/s10589-020-00212-z doi: 10.1007/s10589-020-00212-z |
[6] | A. Boulkhemair, A. Chakib, A. Sadik, Geometrical variations of a state-constrained functional on star-shaped domains, Advanced Mathematical Models and Applications, 6 (2021), 73–88. |
[7] | A. Boulkhemair, A. Chakib, A. Sadik, On numerical study of constrained coupled shape optimization problems based on a new shape derivative method, Numer. Meth. Part. D. E., 39 (2023), 2018–2059. http://dx.doi.org/10.1002/num.22956 doi: 10.1002/num.22956 |
[8] | G. Beer, Starshaped sets and the Hausdorff metric, Pacific J. Math., 61 (1975), 21–27. |
[9] | P. Ciarlet, Mathematical elasticity, volume I: three-dimensional elasticity, Amsterdam: Elsevier Science Publishers, 1988. |
[10] | A. Colesanti, Brunn-Minkowski inequalities for variational functionals and related problems, Adv. Math., 194 (2005), 105–140. http://dx.doi.org/10.1016/j.aim.2004.06.002 doi: 10.1016/j.aim.2004.06.002 |
[11] | A. Colesanti, M. Fimiani, The Minkowski problem for torsional rigidity, Indiana Univ. Math. J., 59 (2010), 1013–1039. |
[12] | V. Demianov, A. Rubinov, Bases of non-smooth analysis and quasi-differential calculus (Russian), Moscow: Nauka, 1990. |
[13] | V. Demianov, A. Rubinov, Quasidifferential calculus, optimization software, New York: Publications Division, 1986. |
[14] | L. Evans, Measure theory and fine properties of functions, Boca Raton: CRC Press, 1992. http://dx.doi.org/10.1201/9780203747940 |
[15] | A. Henrot, M. Pierre, Variation et optimisation de formes. Une analyse géométrique, Berlin: Springer, 2005. http://dx.doi.org/10.1007/3-540-37689-5 |
[16] | L. Hörmander, Notions of convexity, Boston: Birkhäuser, 1994. http://dx.doi.org/10.1007/978-0-8176-4585-4 |
[17] | D. Jerison, The direct method in the calculus of variations for convex bodies, Adv. Math., 122 (1996), 262–279. http://dx.doi.org/10.1006/aima.1996.0062 doi: 10.1006/aima.1996.0062 |
[18] | D. Jerison, A Minkowski problem for electrostatic capacity, Acta Math., 176 (1996), 1–47. http://dx.doi.org/10.1007/BF02547334 doi: 10.1007/BF02547334 |
[19] | A. Niftiyev, Y. Gasimov, Control by boundaries and eigenvalue problems with variable domains (Russian), Baku: Publishing House of Baku State University, 2004. |
[20] | R. Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge: Cambridge University Press, 2013. http://dx.doi.org/10.1017/CBO9781139003858 |
[21] | J. Sokolowski, J. Zolésio, Introduction to shape optimization, Berlin: Springer, 1992. http://dx.doi.org/10.1007/978-3-642-58106-9 |
[22] | R. Webster, Convexity, Oxford: Oxford University Press, 1994. |