Research article Special Issues

A Filippov tumor-immune system with antigenicity

  • Received: 27 March 2023 Revised: 08 May 2023 Accepted: 19 May 2023 Published: 12 June 2023
  • MSC : 34C25, 34D20

  • A threshold strategy model is proposed to demonstrate the extinction of tumor load and the mobilization of immune cells. Using Filippov system theory, we consider global dynamics and sliding bifurcation analysis. It was found that an effective model of cell targeted therapy captures more complex kinetics and that the kinetic behavior of the Filippov system changes as the threshold is altered, including limit cycle and some of the previously described sliding bifurcations. The analysis showed that abnormal changes in patients' tumor cells could be detected in time by using tumor cell-directed therapy appropriately. Under certain initial conditions, exceeding a certain level of tumor load (depending on the patient) leads to different tumor cell changes, that is, different post-treatment effects. Therefore, the optimal control policy for tumor cell-directed therapy should be individualized by considering individual patient data.

    Citation: Hengjie Peng, Changcheng Xiang. A Filippov tumor-immune system with antigenicity[J]. AIMS Mathematics, 2023, 8(8): 19699-19718. doi: 10.3934/math.20231004

    Related Papers:

    [1] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [2] Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506
    [3] Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja . Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel. AIMS Mathematics, 2022, 7(8): 15041-15063. doi: 10.3934/math.2022824
    [4] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [5] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [6] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860
    [7] Zehao Sha, Guoju Ye, Dafang Zhao, Wei Liu . On interval-valued K-Riemann integral and Hermite-Hadamard type inequalities. AIMS Mathematics, 2021, 6(2): 1276-1295. doi: 10.3934/math.2021079
    [8] Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043
    [9] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [10] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637
  • A threshold strategy model is proposed to demonstrate the extinction of tumor load and the mobilization of immune cells. Using Filippov system theory, we consider global dynamics and sliding bifurcation analysis. It was found that an effective model of cell targeted therapy captures more complex kinetics and that the kinetic behavior of the Filippov system changes as the threshold is altered, including limit cycle and some of the previously described sliding bifurcations. The analysis showed that abnormal changes in patients' tumor cells could be detected in time by using tumor cell-directed therapy appropriately. Under certain initial conditions, exceeding a certain level of tumor load (depending on the patient) leads to different tumor cell changes, that is, different post-treatment effects. Therefore, the optimal control policy for tumor cell-directed therapy should be individualized by considering individual patient data.



    The classical Hermite-Hadamard inequality is one of the most well-established inequalities in the theory of convex functions with geometrical interpretation and it has many applications. This inequality may be regarded as a refinement of the concept of convexity. Hermite-Hadamard inequality for convex functions has received renewed attention in recent years and a remarkable refinements and generalizations have been studied [1,2].

    The importance of the study of set-valued analysis from a theoretical point of view as well as from their applications is well known. Many advances in set-valued analysis have been motivated by control theory and dynamical games. Optimal control theory and mathematical programming were an engine driving these domains since the dawn of the sixties. Interval analysis is a particular case and it was introduced as an attempt to handle interval uncertainty that appears in many mathematical or computer models of some deterministic real-world phenomena.

    Furthermore, a few significant inequalities like Hermite-Hadamard and Ostrowski type inequalities have been established for interval valued functions in recent years. In [3,4], Chalco-Cano et al. established Ostrowski type inequalities for interval valued functions by using Hukuhara derivatives for interval valued functions. In [5], Román-Flores et al. established Minkowski and Beckenbach's inequalities for interval valued functions. For other related results we refer to the readers [6].

    In this paper, we establish Hermite-Hadamard type inequalities and He's inequality for interval-valued exponential type pre-invex functions in the Riemann-Liouville interval-valued fractional operator settings.

    We begin with recalling some basic concepts and notions in the convex analysis.

    Let the space of all intervals of is c and Λc given by

    Λ1=[Λ,Λ]={v|Λ<v<Λ},Λ,Λ.

    Various binary operations are given as follows [7]:

    Scalar multiplication: τ,

    τ.Λ1={[τΛ,τΛ],if0τ,0,ifτ=0,[τΛ,τΛ],ifτ0.

    Difference, addition, product and reciprocal for Λ1,Λ2c are respectively given by

    Λ1Λ2=[Λ1,Λ1][Λ2,Λ2]=[Λ1Λ2,Λ1Λ2],Λ1+Λ2=[Λ1,Λ1]+[Λ2,Λ2]=[Λ1+Λ2,Λ1+Λ2],Λ1×Λ2=[min{Λ1Λ2,Λ1Λ2,Λ1Λ2,Λ1Λ2},max{Λ1Λ2,Λ1Λ2,Λ1Λ2,Λ1Λ2}]={uv|uΛ1,vΛ2},1Λ={1v1|0v1Λ}=[1Λ,1Λ],Λ1.1Λ2={u.1v|uΛ1,0vΛ2}=[Λ1.1Λ2,Λ1.1Λ2].

    Let Λ,+ΛandΛ denote the collection of all closed intervals of , the collection of all positive intervals of and the collection of all negative intervals of respectively. In this paper, we examine a few algebraic properties of interval arithmetic.

    Definition 2.1. [7] A mapping Ω is called an interval-valued function of υ on [a1,b1] if it assigns a nonempty interval to every v[a1,b1], that is

    Ω(v)=[Ω(v),Ω(v)], (2.1)

    where Ω(υ)andΩ(υ) are both real valued functions.

    Consider any finite ordered subset be the partition of [a1,b1], that is

    :a1=a1,...,an=b1.

    The mesh of is

    mesh()=max{ai+1ai;i=1,...,n}.

    The Riemann sum of Ω:[a1,b1]Λ can be defined by

    ˜S(Ω,,c)=Σni=1Ω(di)(ai+1ai),

    where mesh()<c.

    Definition 2.2. [8] A mapping Ω:[a1,b1]Λ is called an interval-Riemann integrable on [a1,b1]ifΛΛ such that for every δ>0 satisfying

    d(˜S(Ω,,c),Λ)<δ,

    we have

    Λ1=(IR)b1a1Ω(v)dv. (2.2)

    Lemma 2.1. [9] Let Ω:[a1,b1]Λ be an interval-valued function as in (2.1), then it is interval-Riemann integrable if and only if

    (IR)b1a1Ω(v)dv=[(R)b1a1Ω(v)dv,(R)b1a1Ω(v)dv].

    In simple words, Ω is interval-Riemann integrable if and only if Ω(v)andΩ(v) are both Riemann integrable functions.

    Definition 2.3. [10] Let ΩL1[a1,b1], then the Riemann-Liouville fractional integrals of order m>0 with 0a1 are defined by

    Ima+1Ω(v)=1Γ(m)va1(vr)m1Ω(r)dr,v>a1, (2.3)
    Imb1Ω(v)=1Γ(m)b1v(rv)m1Ω(r)dr,v<b1. (2.4)

    Definition 2.4. [11,12] Let Ω:[a1,b1]Λ be an interval-valued, interval-Riemann integrable function as in (2.1), then the interval Riemann-Liouville fractional integrals of order m>0 with 0a1 are defined by

    Ima+1Ω(v)=1Γ(m)(IR)va1(vr)m1Ω(r)dr,v>a1, (2.5)
    Imb1Ω(v)=1Γ(m)(IR)b1v(rv)m1Ω(r)dr,v<b1. (2.6)

    Corollary 2.1. [12] Let Ω:[a1,b1]Λ be an interval-valued function as in (2.1) such that Ω(v)andΩ(v) are Riemann integrable functions, then

    Ima+1Ω(v)=[Ima+1Ω(v),Ima+1Ω(v)],
    Imb1Ω(v)=[Imb1Ω(v),Imb1Ω(v)].

    Definition 2.5. [13] A set Λn with respect to a vector function η:n×nn is called an invex set if

    b1+τη(a1,b1)Λ,a1,b1Λ,τ1[0,1].

    Definition 2.6. [13] A function Ω on the invex set Λ with respect to a vector function η:Λ×Λn is called pre-invex function if

    Ω(b1+τη(a1,b1))(1τ)Ω(b1)+τΩ(a1),a1,b1Λ,τ1[0,1]. (2.7)

    Lemma 2.2. [14,15] If Λ is open and η:Λ×Λ, then a1,b1Λ,τ,τ1,τ2[0,1], we have

    η(b1,b1+τη(a1,b1))=τη(a1,b1), (2.8)
    η(a1,b1+τη(a1,b1))=(1τ)η(a1,b1), (2.9)
    η(b1+τ2η(a1,b1),b1+τ1η(a1,b1))=(τ2τ1)η(a1,b1). (2.10)

    In [16], Noor presented Hermite-Hadamard-inequality for pre-invex function, as follows:

    Ω(2a1+η(b1,a1)2)1η(b1,a1)a1+η(b1,a1)a1Ω(v)dvΩ(a1)+Ω(b1)2.

    Definition 2.7. [15] Let us consider an interval-valued function Ω on the set Λ, then Ω is pre-invex interval valued function with respect to η on an invex set Λn with respect to a vector function η:Λ×Λn if

    Ω(b1+τ1η(a1,b1))(1τ1)Ω(b1)+τ1Ω(a1),a1,b1Λ,τ1[0,1]. (2.11)

    Taking motivation from the exponential type convexity proposed in [17], we introduce the following notion:

    Definition 2.8. A function Ω on the invex set Λ is called exponential-type pre-invex function with respect to a vector function η:Λ×Λn if

    Ω(b1+τ1η(a1,b1))(e(1τ1)1)Ω(b1)+(eτ11)Ω(a1),a1,b1Λ,τ1[0,1]. (2.12)

    It is important to note that a pre-invex function need not to be convex function. For example, the function f(x)=|x| is not a convex function but it is a pre-invex function with respect to η, where

    η(v,u)={uv,ifu0,v0,v0,u0,vu,otherwise.

    Theorem 2.1. Let Ω:[a1,b1] be an exponential-type pre-invex function with respect to a vector function η:Λ×Λn. If a1<b1 and ΩL[a1,b1], then we have

    12(e121)Ω(a1+12η(b1,a1))1η(b1,a1)a1+η(b1,a1)a1Ω(v)dv(e2)[Ω(a1)+Ω(b1)].

    Proof. At first, from exponential-type-pre-invexity of Ω, we have

    Ω(a1+12η(b1,a1))=Ω(12[b1+τ1η(a1,b1)]+12[a1+τ1η(b1,a1)])(e121)[Ω(b1+τ1η(a1,b1))+Ω(a1+τ1η(b1,a1))].

    Integrating the above inequality with respect to τ1[0,1] yields

    Ω(a1+12η(b1,a1))(e121)(10Ω(b1+τ1η(a1,b1))dτ1+10Ω(a1+τ1η(b1,a1))dτ1)=2(e121)η(b1,a1)a1+η(b1,a1)a1Ω(v)dv.

    Now, taking v=b1+τ1η(a1,b1) gives

    1η(b1,a1)a1+η(b1,a1)a1Ω(v)dv=10Ω(b1+τ1η(a1,b1))dτ110{(eτ11)Ω(a1)+(e(1τ1)1)Ω(b1)}dτ1=(e2)[Ω(a1)+Ω(b1)].

    This completes the proof.

    By merging the concepts of pre-invexity and exponential type pre-invexity, we propose the following notion:

    Definition 2.9. Let Λn be an invex set with respect to a vector function η:Λ×Λn. The interval valued function Ω on the set Λ is exponential-type pre-invex interval valued function with respect to η if

    Ω(b1+τ1η(a1,b1))(e(1τ1)1)Ω(b1)+(eτ11)Ω(a1),a1,b1Λ,τ1[0,1]. (2.13)

    Remark 2.1. In Definition 2.9, by taking h(τ1)=eτ11, where h:[0,1][a1,b1] and h0, then we get h-pre-invex interval valued function with respect to η, that is

    Ω(b1+τ1η(a1,b1))h(1τ1)Ω(b1)+h(τ1)Ω(a1),a1,b1Λ,τ1[0,1]. (2.14)

    Remark 2.2. Let Λn be an invex set with respect to a vector function η:n×nn. The interval valued function Ω on the set Λ is exponential-type-pre-invex function with respect to η if and only if Ω,Ω are exponential-type pre-invex functions with respect to η, that is

    Ω(b1+τ1η(a1,b1))(e(1τ1)1)Ω(b1)+(eτ11)Ω(a1),a1,b1Λ,τ1[0,1], (2.15)
    Ω(b1+τ1η(a1,b1))(e(1τ1)1)Ω(b1)+(eτ11)Ω(a1),a1,b1Λ,τ1[0,1]. (2.16)

    Remark 2.3. If Ω(v)=Ω(v), then we get (2.12).

    Remark 2.4. Since τ1eτ11 and 1τ1e1τ11 for all τ1[0,1], so every nonnegative pre-invex interval valued function with respect to η is also exponential-type pre-invex interval valued function with respect to η.

    In this section, we establish fractional Hermite-Hadamard type inequality for interval-valued exponential type pre-invex. The family of Lebesgue measurable interval-valued functions is denoted by L([v1,v2],0).

    Theorem 3.1. Let Λ be an open invex set with respect to η:Λ×Λ and a1,b1Λ with a1<a1+η(b1,a1). If Ω:[a1,a1+η(b1,a1)] is an exponential type pre-invex interval-valued function such that ΩL[a1,a1+η(b1,a1)] and m>0, then we have (considering Lemma 2.2 holds)

    1(e121)Ω(c1+12η(d1,c1))Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1)+Imc+1Ω(c1+η(d1,c1))]mP(Ω(c1+η(d1,c1))+Ω(c1)), (3.1)

    where

    P=1(m+1)(1)m[(em+e)(1)mΓ(m+1,1)+(m1)Γ(m+1,1)+((eme)(1)m+m+1)Γ(m+1)+2(1)m]. (3.2)

    Proof. Since Ω is an exponential type pre-invex interval-valued function, so

    1(e121)Ω(a1+12η(b1,a1))[Ω(a1)+Ω(b1)].

    Taking a1=c1+(1τ1)η(d1,c1) and b1=c1+(τ1)η(d1,c1) gives

    1(e121)Ω(c1+(1τ1)η(d1,c1)+12η(c1+(τ1)η(d1,c1),c1+(1τ1)η(d1,c1)))[Ω(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))],

    implies

    1(e121)Ω(c1+12η(d1,c1))[Ω(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))].

    By multiplying by τm11 on both sides and integrating over [0,1] with respect to τ1, we get

    (IR)10τm111(e121)Ω(c1+12η(d1,c1))dτ1(IR)10τm11[Ω(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))]dτ1,
    (IR)10τm111(e121)Ω(c1+12η(d1,c1))dτ1=[(R)10τm111(e121)Ω(c1+12η(d1,c1))dτ1,(R)10τm111(e121)Ω(c1+12η(d1,c1))dτ1],
    (IR)10τm111(e121)Ω(c1+12η(d1,c1))dτ1=[1m(e121)Ω(c1+12η(d1,c1)),1m(e121)Ω(c1+12η(d1,c1))]=1m(e121)Ω(c1+12η(d1,c1)), (3.3)
    (IR)10τm11Ω(c1+(τ1)η(d1,c1))=[1ηm(d1,c1)(R)c1+(τ1)η(d1,c1)c(ic)m1Ω(i)di,1ηm(d1,c1)(R)c1+(τ1)η(d1,c1)c(ic)m1Ω(i)di],
    (IR)10τm11Ω(c1+(τ1)η(d1,c1))=Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1),Im(c1+η(d1,c1))Ω(c1)]=Γ(m)ηm(d1,c1)Im(c1+η(d1,c1))Ω(c1). (3.4)

    Similarly

    (IR)10τm11Ω(c1+(1τ1)η(d1,c1))=Γ(m)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)),Imc+1Ω(c1+η(d1,c1))]=Γ(m)ηm(d1,c1)Imc+1Ω(c1+η(d1,c1)). (3.5)

    From (3.3)–(3.5), we get

    1m(e121)Ω(c1+12η(d1,c1))Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1)+Imc+1Ω(c1+η(d1,c1))]. (3.6)

    Now, from the interval valued exponential type pre-invexity of Ω, we have

    Ω(c1+τ1η(d1,c1))=Ω(c1+η(d1,c1)+(1τ1)η(c1,c1+η(d1,c1)))(eτ11)Ω(c1+η(d1,c1))+(e(1τ1)1)Ω(c1). (3.7)

    Similarly

    Ω(c1+(1τ1)η(d1,c1))=Ω(c1+η(d1,c1)+(τ1)η(c1,c1+η(d1,c1)))(e(1τ1)1)Ω(c1+η(d1,c1))+(eτ11)Ω(c1). (3.8)

    Thus, by adding (3.7) and (3.8), we get

    Ω(c1+τ1η(d1,c1))+Ω(c1+(1τ1)η(d1,c1))[eτ1+e(1τ1)2](Ω(c1+η(d1,c1))+Ω(c1)).

    By multiplying by τm11 on both sides and integrating over [0,1] with respect to τ1, we get

    (IR)10τm11Ω(c1+τ1η(d1,c1))dτ1+(IR)10τm11Ω(c1+(1τ1)η(d1,c1))dτ1(IR)10τm11[eτ1+e(1τ1)2](Ω(c1+η(d1,c1))+Ω(c1))dτ1.

    Now, from (3.2) we get

    (IR)10τm11[eτ1+e(1τ1)2](Ω(c1+η(d1,c1))+Ω(c1))dτ1=[(R)10τm11[eτ1+e(1τ1)2](Ω(c1+η(d1,c1))+Ω(c1))dτ1,(R)10τm11[eτ1+e(1τ1)2](Ω(c1+η(d1,c1))+Ω(c1))dτ1]=[P(Ω(c1+η(d1,c1))+Ω(c1)),P(Ω(c1+η(d1,c1))+Ω(c1))]=P(Ω(c1+η(d1,c1))+Ω(c1)). (3.9)

    Also from (3.4), (3.5) and (3.9), we get

    Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1)+Imc+1Ω(c1+η(d1,c1))]P(Ω(c1+η(d1,c1))+Ω(c1)). (3.10)

    Combining (3.6) and (3.10), we get

    1(e121)Ω(c1+12η(d1,c1))Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1)+Imc+1Ω(c1+η(d1,c1))]mP(Ω(c1+η(d1,c1))+Ω(c1)).

    Corollary 3.1. If Ω(v)=Ω(v), then (3.1) leads to the following fractional inequality for exponential type pre-invex function:

    1(e121)Ω(c1+12η(d1,c1))Γ(m+1)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1)+Imc+1Ω(c1+η(d1,c1))]mP(Ω(c1+η(d1,c1))+Ω(c1)).

    Theorem 3.2. Let Λ be an open invex set with respect to η:Λ×Λ and a1,b1Λ with a1<a1+η(b1,a1). If Ω,Ω1:[a1,a1+η(b1,a1)] are exponential type pre-invex interval-valued functions such that Ω,Ω1L[a1,a1+η(b1,a1)] and m>0, then we have (considering Lemma 2.2 holds)

    Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)), (3.11)

    where

    P1=e2Γ(m)e2Γ(m,2)2m+2eΓ(m,1)+2Γ(m,1)2Γ(m)(1)m+Γ(m)Γ(m,2)(1)m2m2eΓ(m)+2m, (3.12)
    P2=eΓ(m,1)+Γ(m,1)(1)mΓ(m)(1)meΓ(m)+em+1m, (3.13)
    Υ1(a1,a1+η(b1,a1))=[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)], (3.14)

    and

    Υ2(a1,a1+η(b1,a1))=[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. (3.15)

    Proof. Since ΩandΩ1 are exponential type pre-invex interval-valued functions, so we have

    Ω(a1+τ1η(b1,a1))=Ω(a1+η(b1,a1)+(1τ1)η(a1,a1+η(b1,a1)))(eτ11)Ω(a1+η(b1,a1))+(e(1τ1)1)Ω(a1)

    and

    Ω1(a1+τ1η(b1,a1))=Ω1(a1+η(b1,a1)+(1τ1)η(a1,a1+η(b1,a1)))(eτ11)Ω1(a1+η(b1,a1))+(e(1τ1)1)Ω1(a1).

    Since Ω,Ω1+Λ, so

    Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))(eτ11)2Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+(e(1τ1)1)2Ω(a1).Ω1(a1)+(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. (3.16)

    Similarly, we have

    Ω(a1+(1τ1)η(b1,a1)).Ω1(a1+(1τ1)η(b1,a1))(e(1τ1)1)2Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+(eτ11)2Ω(a1).Ω1(a1)+(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))]. (3.17)

    Adding (3.16) and (3.17) yields

    Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))+Ω(a1+(1τ1)η(b1,a1)).Ω1(a1+(1τ1)η(b1,a1))[(e(1τ1)1)2+(eτ11)2][Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]+2(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1))].

    From (3.14) and (3.15), we have

    Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))+Ω(a1+(1τ1)η(b1,a1)).Ω1(a1+(1τ1)η(b1,a1))[(e(1τ1)1)2+(eτ11)2]Υ1(a1,a1+η(b1,a1))+2(eτ11)(e(1τ1)1)Υ2(a1,a1+η(b1,a1)).

    Multiplying by τm11 on both sides and integrating over [0,1] with respect to τ1 gives

    (IR)10τm11Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))dτ1+(IR)10τm11Ω(a1+(1τ1)η(b1,a1)).Ω1(a1+(1τ1)η(b1,a1))dτ1(IR)10τm11[(e(1τ1)1)2+(eτ11)2]Υ1(a1,a1+η(b1,a1))dτ1+2(IR)10τm11(eτ11)(e(1τ1)1)Υ2(a1,a1+η(b1,a1))dτ1.

    So

    (IR)10τm11Ω(a1+τ1η(b1,a1)).Ω1(a1+τ1η(b1,a1))dτ1=Γ(m)ηm(d1,c1)Im(c1+η(d1,c1))Ω(c1).Ω1(c1)

    and

    (IR)10τm11Ω(a1+(1τ1)η(b1,a1)).Ω1(a1+(1τ1)η(b1,a1))dτ1=Γ(m)ηm(d1,c1)Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1)).

    From (3.12) and (3.13), we get

    (IR)10τm11[(e(1τ1)1)2+(eτ11)2]Υ1(a1,a1+η(b1,a1))dτ1=P1Υ1(a1,a1+η(b1,a1))

    and

    (IR)10τm11(eτ11)(e(1τ1)1)Υ2(a1,a1+η(b1,a1))dτ1=P2Υ2(a1,a1+η(b1,a1)).

    Thus,

    Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)).

    Corollary 3.2. If Ω(v)=Ω(v), then (3.11) leads to the following fractional inequality for exponential type pre-invex function:

    Γ(m)ηm(d1,c1)[Im(c1+η(d1,c1))Ω(c1).Ω1(c1)+Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))]P1Υ1(a1,a1+η(b1,a1))+2P2Υ2(a1,a1+η(b1,a1)).

    Theorem 3.3. Let Λ be an open invex set with respect to η:Λ×Λ and a1,b1Λ with a1<a1+η(b1,a1). If Ω,Ω1:[a1,a1+η(b1,a1)] are exponential type pre-invex interval-valued functions such that Ω,Ω1L[a1,a1+η(b1,a1)] and m>0, then from (3.12)–(3.15), we have (considering Lemma 2.2 holds)

    Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))(e121)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))Ω(c1).Ω1(c1)]]. (3.18)

    Proof. Since Ω is an exponential type pre-invex interval-valued function, so we have

    Ω(a1+12η(b1,a1))(e121)[Ω(a1)+Ω(b1)].

    Taking a1=c1+(1τ1)η(d1,c1) and b1=c1+(τ1)η(d1,c1) gives

    Ω(c1+(1τ1)η(d1,c1)+12η(c1+(τ1)η(d1,c1),c1+(1τ1)η(d1,c1)))(e121)[Ω(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))],

    implies

    Ω(c1+12η(d1,c1))(e121)[Ω(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1))]. (3.19)

    Similarly

    Ω1(c1+12η(d1,c1))(e121)[Ω1(c1+(1τ1)η(d1,c1))+Ω1(c1+(τ1)η(d1,c1))]. (3.20)

    Multiplying (3.19) and (3.20) gives

    Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))(e121)2[Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))+Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))]. (3.21)

    Since Ω,Ω1+Λ, are exponential type pre-invex interval-valued functions for τ1[0,1], so we have

    Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))(e(1τ1)1)2Ω(a1+η(b1,a1)).Ω1(a1)+(eτ11)2Ω(a1).Ω1(a1+η(b1,a1))+(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]. (3.22)

    Similarly

    Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))(eτ11)2Ω(a1+η(b1,a1)).Ω1(a1)+(e(1τ1)1)2Ω(a1).Ω1(a1+η(b1,a1))+(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)]. (3.23)

    Adding (3.22) and (3.23) yields

    Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))[(eτ11)2+(e(1τ1)1)2](Ω(a1+η(b1,a1)).Ω1(a1)+Ω(a1).Ω1(a1+η(b1,a1)))+2(eτ11)(e(1τ1)1)[Ω(a1+η(b1,a1)).Ω1(a1+η(b1,a1))+Ω(a1).Ω1(a1)].

    Now from (3.21), we can write

    Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))(e121)2[[(eτ11)2+(e(1τ1)1)2]Υ2(a1,a1+η(b1,a1))+2(eτ11)(e(1τ1)1)Υ1(a1,a1+η(b1,a1))+Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))+Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))].

    Multiplying by τm11 on both sides and integrating over [0,1] with respect to τ1 yields

    (IR)10τm11Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))dτ1(e121)2[(IR)10τm11[(eτ11)2+(e(1τ1)1)2]Υ2(a1,a1+η(b1,a1))dτ1+2(IR)10τm11(eτ11)(e(1τ1)1)Υ1(a1,a1+η(b1,a1))dτ1+(IR)10τm11Ω(c1+(1τ1)η(d1,c1)).Ω1(c1+(1τ1)η(d1,c1))dτ1+(IR)10τm11Ω(c1+(τ1)η(d1,c1)).Ω1(c1+(τ1)η(d1,c1))dτ1].

    Thus from (3.12)–(3.15), we get

    Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))(e121)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))Ω(c1).Ω1(c1)]].

    Corollary 3.3. If Ω(v)=Ω(v), then (3.18) leads to the following fractional inequality for exponential type pre-invex function:

    Ω(c1+12η(d1,c1)).Ω1(c1+12η(d1,c1))(e121)2[mP1Υ2(a1,a1+η(b1,a1))+mP2Υ1(a1,a1+η(b1,a1))+Γ(m+1)ηm(d1,c1)[Imc+1Ω(c1+η(d1,c1)).Ω1(c1+η(d1,c1))+Im(c1+η(d1,c1))Ω(c1).Ω1(c1)]].

    In this section, we establish Hermite-hadamard type inequality in the setting of the He's fractional derivatives introduced in [18].

    Definition 4.1. Let Ω be an L1 function defined on an interval [0,n1]. Then the k1-th He's fractional derivative of Ω(n1) is defined by

    Ik1n1Ω(n1)=1Γ(ik1)didni1n10(τ1n)ik11Ω(τ1)dτ1.

    The interval He's fractional derivative based on left and right end point functions can be defined by

    Ik1n1Ω(n1)=1Γ(ik1)didni1n10(τ1n)ik11Ω(τ1)dτ1=1Γ(ik1)didni1n10(τ1n)ik11[Ω(τ1),Ω(τ1)]dτ1,n>n1,

    where

    Ik1n1Ω(n1)=1Γ(ik1)didni1n10(τ1n)ik11Ω(τ1)dτ1,n>n1 (4.1)

    and

    Ik1n1Ω(n1)=1Γ(ik1)didni1n10(τ1n)ik11Ω(τ1)dτ1,n>n1. (4.2)

    Theorem 4.1. Let Ω:[n1,n2] be an exponential type pre-invex interval-valued function defined on [n1,n2]Λ, where Λ is an open invex set with respect to η:Λ×Λ and Ω:[n1,n2]+c is given by Ω(n)=[Ω(n),Ω(n)] for all n[n1,n2]. If ΩL1([n1,n2],), then

    (1)ik11Ω(n12)(e121)nk1nik12[(1)ik11Ik1(1n)bΩ((1n)b)+Ik1nbΩ(nb)]. (4.3)

    Proof. Let Ω:[n1,n2] be an exponential type pre-invex interval-valued function defined on [n1,n2], then

    Ω(n1+12η(n2,n1))(e121)[Ω(n2+τ1η(n1,n2))+Ω(n1+τ1η(n2,n1))]

    and

    Ω(n1+12η(n2,n1))(e121)[Ω(n2+τ1η(n1,n2))+Ω(n1+τ1η(n2,n1))].

    Taking n2=0,0n1 and multiplying by (τ1n)ik11Γ(ik1), we get

    (τ1n)ik11Γ(ik1)Ω(n12)(e121)(τ1n)ik11Γ(ik1)[Ω((1τ1)n1)+Ω(τ1n1)].

    Integrating with respect to τ1 over [0,n1] gives

    Ω(n12)1Γ(ik1)n10(τ1n)ik11dτ1(e121)Γ(ik1)n10(τ1n)ik11Ω((1τ1)n1)dτ1+(e121)Γ(ik1)n10(τ1n)ik11Ω(τ1n1)dτ1,

    implies

    Ω(n12)(1)ik11nik1Γ(ik1)(e121)Γ(ik1)n10(τ1n)ik11Ω((1τ1)n1)dτ1+(e121)Γ(ik1)n10(τ1n)ik11Ω(τ1n1)dτ1.

    Getting i-th derivative on both sides and using (4.1), we get

    (1)ik11Ω(n12)(e121)nk1nik11[(1)ik11Ik1(1n)bΩ((1n)b)+Ik1nbΩ(nb)].

    Similarly

    (1)ik11Ω(n12)(e121)nk1nik11[(1)ik11Ik1(1n)bΩ((1n)b)+Ik1nbΩ(nb)].

    Thus, we can write

    (1)ik11[Ω(n12),Ω(n12)](e121)nk1nik11[(1)ik11Ik1(1n)b[Ω((1n)b),Ω((1n)b)]+Ik1nb[Ω(nb),Ω(nb)]].

    So,

    (1)ik11Ω(n12)(e121)nk1nik11[(1)ik11Ik1(1n)bΩ((1n)b)+Ik1nbΩ(nb)].

    Corollary 4.1. If Ω(v)=Ω(v), then (4.3) leads to the following fractional inequality for exponential type pre-invex function:

    (1)ik11Ω(n12)(e121)nk1nik11[(1)ik11Ik1(1n)bΩ((1n)b)+Ik1nbΩ(nb)].

    In this paper we studied the interval-valued exponential type pre-invex functions. We established He's and Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions in the setting of Riemann-Liouville interval-valued fractional operator.

    This work was sponsored in part by Henan Science and Technology Project of China (No:182102110292).

    The author declares no conflict of interest.



    [1] P. Lagiou, A. Trichopoulou, D. Trichopoulos, Nutritional epidemiology of cancer: Accomplishments and prospects, Proc. Nutr. Soc., 61 (2002), 217–222. https://doi.org/10.1079/PNS2002145 doi: 10.1079/PNS2002145
    [2] R. P. Araujo, D. L. S. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), 1039–1091. https://doi.org/10.1016/j.bulm.2003.11.002 doi: 10.1016/j.bulm.2003.11.002
    [3] R. Eftimie, J. L. Bramson, D. J. D. Earn, Interactions between the immune system and cancer, Bull. Math. Biol., 73 (2011), 2–32. http://doi.org/10.1007/s11538-010-9526-3 doi: 10.1007/s11538-010-9526-3
    [4] R. Chignola, R. Foroni, Estimating the growth kinetics of experimental tumors from as few as two determinations of tumor size: Implications for clinical oncology, IEEE T. Biomed. Eng., 208 (2005), 808–815. https://doi.org/10.1109/TBME.2005.845219 doi: 10.1109/TBME.2005.845219
    [5] R. Chignola, R. Foroni, Gompertzian growth pattern correlated with phenotypic organization of colon carcinoma, malignant glioma and non-small cell lung carcinoma cell lines, Cell Prolif., 36 (2003), 65–73. https://doi.org/10.1046/j.1365-2184.2003.00259.x doi: 10.1046/j.1365-2184.2003.00259.x
    [6] G. Parmiani, L. Rivoltini, G. Andreola, Cytokines in cancer therapy, Immunol. Lett., 74 (2000), 41–44. https://doi.org/10.1016/S0165-2478(00)00247-9 doi: 10.1016/S0165-2478(00)00247-9
    [7] A. D'Onofrio, Metamodeling tumour-immune system interaction, tumour evasion and immunotherapy, Math. Comput. Model., 47 (2008), 614–637. https://doi.org/10.1016/j.mcm.2007.02.032 doi: 10.1016/j.mcm.2007.02.032
    [8] B. Quesnel, Dormant tumor cells as a therapeutic target?, Cancer Lett., 267 (2008), 10–17. https://doi.org/10.1016/j.canlet.2008.02.055 doi: 10.1016/j.canlet.2008.02.055
    [9] C. Castillochavez, Mathematical models in population biology and epidemiology, New York: Springer, 2012. https://doi.org/10.1007/978-1-4757-3516-1
    [10] B. Quesnel, Tumor dormancy and immunoescape, APMIS, 116 (2008), 685–694. https://doi.org/10.1111/j.1600-0463.2008.01163.x doi: 10.1111/j.1600-0463.2008.01163.x
    [11] U. Fory, J. Waniewski, P. Zhivkov, Anti-tumor immunity and tumor anti-immunity in a mathematical model of tumor immunotherapy, J. Biol. Syst., 14 (2006), 13–30. https://doi.org/10.1142/S0218339006001702 doi: 10.1142/S0218339006001702
    [12] S. Michelson, J. T. Leith, Growth factors and growth control of heterogeneous cell populations, Bull. Math. Biol., 55 (1993), 993–1011. https://doi.org/10.1007/BF02460696 doi: 10.1007/BF02460696
    [13] S. Michelson, B. E. Miller, A. S. Glicksman, J. T. Leith, Tumor micro-ecology and competitive interactionsy, Math. Comput. Model., 55 (1993), 993–1011. https://doi.org/10.1007/BF02460696 doi: 10.1007/BF02460696
    [14] R. W. Shonkwiler, J. Herod, Mathematical biology: An introduction with Maple and Matlab, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-70984-0
    [15] S. Khajanchi, J. J. Nieto, Mathematical modeling of tumor-immune competitive system, considering the role of time delay, Appl. Math. Comput., 340 (2019), 180–205. https://doi.org/10.1016/j.amc.2018.08.018 doi: 10.1016/j.amc.2018.08.018
    [16] D. Kirschner, J. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 370 (1998), 235–252. https://doi.org/10.1007/s002850050127 doi: 10.1007/s002850050127
    [17] V. A. Kuznetsov, I. A. Taylor, M. A. Mark, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321. https://doi.org/10.1016/S0092-8240(05)80260-5 doi: 10.1016/S0092-8240(05)80260-5
    [18] G. E. Mahlbacher, K. C. Reihmer, H. B. Frieboes, Mathematical modeling of tumor-immune cell interactions, J. Theor. Biol., 469 (2019), 47–60. https://doi.org/10.1016/j.jtbi.2019.03.002 doi: 10.1016/j.jtbi.2019.03.002
    [19] R. Yafia, A study of differential equation modeling malignant tumor cells in competition with immune system, Int. J. Biomath., 4 (2011), 185–206. https://doi.org/10.1142/S1793524511001404 doi: 10.1142/S1793524511001404
    [20] J. Li, X. Xie, Y. Chen, D. Zhang, Complex dynamics of a tumor-immune system with antigenicity, Appl. Math. Comput., 400 (2021), 126052. https://doi.org/10.1016/j.amc.2021.126052 doi: 10.1016/j.amc.2021.126052
    [21] M. Waito, S. R. Walsh, A. Rasiuk, B. W. Bridle, A. R. Willms, A mathematical model of cytokine dynamics during a cytokine storm, In: Mathematical and Computational Approaches in Advancing Modern Science and Engineering, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-30379-6_31
    [22] R. Yafia, A study of differential equation modeling malignant tumor cells in competition with immune system, Int. J. Biomath., 4 (2011), 185–206. https://doi.org/10.1142/S1793524511001404 doi: 10.1142/S1793524511001404
    [23] R. Yafia, Hopf bifurcation in differential equations with delay for tumor-immune system competition model, SIAM J. Appl. Math., 67 (2007), 1693–1703. doilinkhttps://doi.org/10.1137/060657947 doi: 10.1137/060657947
    [24] B. Tang, Y. Xiao, S. Sivaloganathan, J. Wu, A piecewise model of virus-immune system with effector cell-guided therapy, Appl. Math. Model., 47 (2017), 227–248. https://doi.org/10.1016/j.apm.2017.03.023 doi: 10.1016/j.apm.2017.03.023
    [25] Y. Xiao, X. Xu, S. Tang, Sliding mode control of outbreaks of emerging infectious diseases, Bull. Math. Biol., 74 (2012), 2403–2422. https://doi.org/10.1007/s11538-012-9758-5 doi: 10.1007/s11538-012-9758-5
    [26] V. Utkin, J. Guldner, J. Shi, Sliding mode control in electro-mechanical systems, Boca Raton: CRC press, 2017. https://doi.org/10.1201/9781420065619
    [27] W. Qin, X. Tan, M. Tosato, X. Liu, Threshold control strategy for a non-smooth Filippov ecosystem with group defense, Appl. Math. Comput., 362 (2019), 124532. https://doi.org/10.1016/j.amc.2019.06.046 doi: 10.1016/j.amc.2019.06.046
    [28] Y. Zhang, P. Song, Dynamics of the piecewise smooth epidemic model with nonlinear incidence, Chaos Soliton Fract., 146 (2021), 110903. https://doi.org/10.1016/j.chaos.2021.110903 doi: 10.1016/j.chaos.2021.110903
    [29] N. Kronik, Y. Kogan, V. Vainstein, Z. Agur, Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics, Cancer Immunol. Immunother., 57 (2008), 425–439. https://doi.org/10.1007/s00262-007-0387-z doi: 10.1007/s00262-007-0387-z
    [30] R. Eftimie, J. L. Bramson, D. J. D. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2–32. https://doi.org/10.1007/s11538-010-9526-3 doi: 10.1007/s11538-010-9526-3
    [31] S. Zhang, D. Bernard, W. I. Khan, M. H. Kaplan, J. L. Bramson, Y. H. Wan, CD4+ T-cell-mediated anti-tumor immunity can be uncoupled from autoimmunity via the STAT4/STAT6 signaling axis, Eur. J. Immunol., 39 (2009), 1252–1259. https://doi.org/10.1002/eji.200839152 doi: 10.1002/eji.200839152
  • This article has been cited by:

    1. Kin Keung Lai, Jaya Bisht, Nidhi Sharma, Shashi Kant Mishra, Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions, 2022, 10, 2227-7390, 264, 10.3390/math10020264
    2. Yeliang Xiao, Ahsan Fareed Shah, Tariq Javed Zia, Ebenezer Bonyah, Muhammad Gulzar, Positive Weighted Symmetry Function Kernels and Some Related Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9372629
    3. Lei Geng, Muhammad Shoaib Saleem, Kiran Naseem Aslam, Rahat Bano, Yusuf Gurefe, Fractional Version of Hermite-Hadamard and Fejér Type Inequalities for a Generalized Class of Convex Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/2935740
    4. Hari Mohan Srivastava, Soubhagya Kumar Sahoo, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Interval valued Hadamard-Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel, 2022, 7, 2473-6988, 15041, 10.3934/math.2022824
    5. Yeliang Xiao, Muhammad Shoaib Saleem, Faiza Batool, Xiaolong Qin, Some Fractional Integral Inequalities for a Generalized Class of Nonconvex Functions, 2022, 2022, 2314-4785, 1, 10.1155/2022/3476461
    6. Ahsan Fareed Shah, Serap Özcan, Miguel Vivas-Cortez, Muhammad Shoaib Saleem, Artion Kashuri, Fractional Hermite–Hadamard–Mercer-Type Inequalities for Interval-Valued Convex Stochastic Processes with Center-Radius Order and Their Related Applications in Entropy and Information Theory, 2024, 8, 2504-3110, 408, 10.3390/fractalfract8070408
    7. Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan, Some well known inequalities on two dimensional convex mappings by means of Pseudo LR interval order relations via fractional integral operators having non-singular kernel, 2024, 9, 2473-6988, 16061, 10.3934/math.2024778
    8. Waqar Afzal, Najla M. Aloraini, Mujahid Abbas, Jong-Suk Ro, Abdullah A. Zaagan, Hermite-Hadamard, Fejér and trapezoid type inequalities using Godunova-Levin Preinvex functions via Bhunia's order and with applications to quadrature formula and random variable, 2024, 21, 1551-0018, 3422, 10.3934/mbe.2024151
    9. Hanan Alohali, Valer-Daniel Breaz, Omar Mutab Alsalami, Luminita-Ioana Cotirla, Ahmed Alamer, Generalization of the Fuzzy Fejér–Hadamard Inequalities for Non-Convex Functions over a Rectangle Plane, 2024, 13, 2075-1680, 684, 10.3390/axioms13100684
    10. Abdullah Ali H. Ahmadini, Waqar Afzal, Mujahid Abbas, Elkhateeb S. Aly, Weighted Fejér, Hermite–Hadamard, and Trapezium-Type Inequalities for (h1,h2)–Godunova–Levin Preinvex Function with Applications and Two Open Problems, 2024, 12, 2227-7390, 382, 10.3390/math12030382
    11. Maryam Gharamah Ali Alshehri, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat, Yoshihiro Sawano, Some New Improvements for Fractional Hermite–Hadamard Inequalities by Jensen–Mercer Inequalities, 2024, 2024, 2314-8896, 10.1155/2024/6691058
    12. Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Kwara Nantomah, Ding-Xuan Zhou, Some Novel Inequalities for Godunova–Levin Preinvex Functions via Interval Set Inclusion (⊆) Relation, 2025, 2025, 2314-4629, 10.1155/jom/5570638
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1449) PDF downloads(60) Cited by(3)

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog