A threshold strategy model is proposed to demonstrate the extinction of tumor load and the mobilization of immune cells. Using Filippov system theory, we consider global dynamics and sliding bifurcation analysis. It was found that an effective model of cell targeted therapy captures more complex kinetics and that the kinetic behavior of the Filippov system changes as the threshold is altered, including limit cycle and some of the previously described sliding bifurcations. The analysis showed that abnormal changes in patients' tumor cells could be detected in time by using tumor cell-directed therapy appropriately. Under certain initial conditions, exceeding a certain level of tumor load (depending on the patient) leads to different tumor cell changes, that is, different post-treatment effects. Therefore, the optimal control policy for tumor cell-directed therapy should be individualized by considering individual patient data.
Citation: Hengjie Peng, Changcheng Xiang. A Filippov tumor-immune system with antigenicity[J]. AIMS Mathematics, 2023, 8(8): 19699-19718. doi: 10.3934/math.20231004
A threshold strategy model is proposed to demonstrate the extinction of tumor load and the mobilization of immune cells. Using Filippov system theory, we consider global dynamics and sliding bifurcation analysis. It was found that an effective model of cell targeted therapy captures more complex kinetics and that the kinetic behavior of the Filippov system changes as the threshold is altered, including limit cycle and some of the previously described sliding bifurcations. The analysis showed that abnormal changes in patients' tumor cells could be detected in time by using tumor cell-directed therapy appropriately. Under certain initial conditions, exceeding a certain level of tumor load (depending on the patient) leads to different tumor cell changes, that is, different post-treatment effects. Therefore, the optimal control policy for tumor cell-directed therapy should be individualized by considering individual patient data.
[1] | P. Lagiou, A. Trichopoulou, D. Trichopoulos, Nutritional epidemiology of cancer: Accomplishments and prospects, Proc. Nutr. Soc., 61 (2002), 217–222. https://doi.org/10.1079/PNS2002145 doi: 10.1079/PNS2002145 |
[2] | R. P. Araujo, D. L. S. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), 1039–1091. https://doi.org/10.1016/j.bulm.2003.11.002 doi: 10.1016/j.bulm.2003.11.002 |
[3] | R. Eftimie, J. L. Bramson, D. J. D. Earn, Interactions between the immune system and cancer, Bull. Math. Biol., 73 (2011), 2–32. http://doi.org/10.1007/s11538-010-9526-3 doi: 10.1007/s11538-010-9526-3 |
[4] | R. Chignola, R. Foroni, Estimating the growth kinetics of experimental tumors from as few as two determinations of tumor size: Implications for clinical oncology, IEEE T. Biomed. Eng., 208 (2005), 808–815. https://doi.org/10.1109/TBME.2005.845219 doi: 10.1109/TBME.2005.845219 |
[5] | R. Chignola, R. Foroni, Gompertzian growth pattern correlated with phenotypic organization of colon carcinoma, malignant glioma and non-small cell lung carcinoma cell lines, Cell Prolif., 36 (2003), 65–73. https://doi.org/10.1046/j.1365-2184.2003.00259.x doi: 10.1046/j.1365-2184.2003.00259.x |
[6] | G. Parmiani, L. Rivoltini, G. Andreola, Cytokines in cancer therapy, Immunol. Lett., 74 (2000), 41–44. https://doi.org/10.1016/S0165-2478(00)00247-9 doi: 10.1016/S0165-2478(00)00247-9 |
[7] | A. D'Onofrio, Metamodeling tumour-immune system interaction, tumour evasion and immunotherapy, Math. Comput. Model., 47 (2008), 614–637. https://doi.org/10.1016/j.mcm.2007.02.032 doi: 10.1016/j.mcm.2007.02.032 |
[8] | B. Quesnel, Dormant tumor cells as a therapeutic target?, Cancer Lett., 267 (2008), 10–17. https://doi.org/10.1016/j.canlet.2008.02.055 doi: 10.1016/j.canlet.2008.02.055 |
[9] | C. Castillochavez, Mathematical models in population biology and epidemiology, New York: Springer, 2012. https://doi.org/10.1007/978-1-4757-3516-1 |
[10] | B. Quesnel, Tumor dormancy and immunoescape, APMIS, 116 (2008), 685–694. https://doi.org/10.1111/j.1600-0463.2008.01163.x doi: 10.1111/j.1600-0463.2008.01163.x |
[11] | U. Fory, J. Waniewski, P. Zhivkov, Anti-tumor immunity and tumor anti-immunity in a mathematical model of tumor immunotherapy, J. Biol. Syst., 14 (2006), 13–30. https://doi.org/10.1142/S0218339006001702 doi: 10.1142/S0218339006001702 |
[12] | S. Michelson, J. T. Leith, Growth factors and growth control of heterogeneous cell populations, Bull. Math. Biol., 55 (1993), 993–1011. https://doi.org/10.1007/BF02460696 doi: 10.1007/BF02460696 |
[13] | S. Michelson, B. E. Miller, A. S. Glicksman, J. T. Leith, Tumor micro-ecology and competitive interactionsy, Math. Comput. Model., 55 (1993), 993–1011. https://doi.org/10.1007/BF02460696 doi: 10.1007/BF02460696 |
[14] | R. W. Shonkwiler, J. Herod, Mathematical biology: An introduction with Maple and Matlab, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-70984-0 |
[15] | S. Khajanchi, J. J. Nieto, Mathematical modeling of tumor-immune competitive system, considering the role of time delay, Appl. Math. Comput., 340 (2019), 180–205. https://doi.org/10.1016/j.amc.2018.08.018 doi: 10.1016/j.amc.2018.08.018 |
[16] | D. Kirschner, J. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 370 (1998), 235–252. https://doi.org/10.1007/s002850050127 doi: 10.1007/s002850050127 |
[17] | V. A. Kuznetsov, I. A. Taylor, M. A. Mark, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321. https://doi.org/10.1016/S0092-8240(05)80260-5 doi: 10.1016/S0092-8240(05)80260-5 |
[18] | G. E. Mahlbacher, K. C. Reihmer, H. B. Frieboes, Mathematical modeling of tumor-immune cell interactions, J. Theor. Biol., 469 (2019), 47–60. https://doi.org/10.1016/j.jtbi.2019.03.002 doi: 10.1016/j.jtbi.2019.03.002 |
[19] | R. Yafia, A study of differential equation modeling malignant tumor cells in competition with immune system, Int. J. Biomath., 4 (2011), 185–206. https://doi.org/10.1142/S1793524511001404 doi: 10.1142/S1793524511001404 |
[20] | J. Li, X. Xie, Y. Chen, D. Zhang, Complex dynamics of a tumor-immune system with antigenicity, Appl. Math. Comput., 400 (2021), 126052. https://doi.org/10.1016/j.amc.2021.126052 doi: 10.1016/j.amc.2021.126052 |
[21] | M. Waito, S. R. Walsh, A. Rasiuk, B. W. Bridle, A. R. Willms, A mathematical model of cytokine dynamics during a cytokine storm, In: Mathematical and Computational Approaches in Advancing Modern Science and Engineering, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-30379-6_31 |
[22] | R. Yafia, A study of differential equation modeling malignant tumor cells in competition with immune system, Int. J. Biomath., 4 (2011), 185–206. https://doi.org/10.1142/S1793524511001404 doi: 10.1142/S1793524511001404 |
[23] | R. Yafia, Hopf bifurcation in differential equations with delay for tumor-immune system competition model, SIAM J. Appl. Math., 67 (2007), 1693–1703. doilinkhttps://doi.org/10.1137/060657947 doi: 10.1137/060657947 |
[24] | B. Tang, Y. Xiao, S. Sivaloganathan, J. Wu, A piecewise model of virus-immune system with effector cell-guided therapy, Appl. Math. Model., 47 (2017), 227–248. https://doi.org/10.1016/j.apm.2017.03.023 doi: 10.1016/j.apm.2017.03.023 |
[25] | Y. Xiao, X. Xu, S. Tang, Sliding mode control of outbreaks of emerging infectious diseases, Bull. Math. Biol., 74 (2012), 2403–2422. https://doi.org/10.1007/s11538-012-9758-5 doi: 10.1007/s11538-012-9758-5 |
[26] | V. Utkin, J. Guldner, J. Shi, Sliding mode control in electro-mechanical systems, Boca Raton: CRC press, 2017. https://doi.org/10.1201/9781420065619 |
[27] | W. Qin, X. Tan, M. Tosato, X. Liu, Threshold control strategy for a non-smooth Filippov ecosystem with group defense, Appl. Math. Comput., 362 (2019), 124532. https://doi.org/10.1016/j.amc.2019.06.046 doi: 10.1016/j.amc.2019.06.046 |
[28] | Y. Zhang, P. Song, Dynamics of the piecewise smooth epidemic model with nonlinear incidence, Chaos Soliton Fract., 146 (2021), 110903. https://doi.org/10.1016/j.chaos.2021.110903 doi: 10.1016/j.chaos.2021.110903 |
[29] | N. Kronik, Y. Kogan, V. Vainstein, Z. Agur, Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics, Cancer Immunol. Immunother., 57 (2008), 425–439. https://doi.org/10.1007/s00262-007-0387-z doi: 10.1007/s00262-007-0387-z |
[30] | R. Eftimie, J. L. Bramson, D. J. D. Earn, Interactions between the immune system and cancer: A brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2–32. https://doi.org/10.1007/s11538-010-9526-3 doi: 10.1007/s11538-010-9526-3 |
[31] | S. Zhang, D. Bernard, W. I. Khan, M. H. Kaplan, J. L. Bramson, Y. H. Wan, CD4+ T-cell-mediated anti-tumor immunity can be uncoupled from autoimmunity via the STAT4/STAT6 signaling axis, Eur. J. Immunol., 39 (2009), 1252–1259. https://doi.org/10.1002/eji.200839152 doi: 10.1002/eji.200839152 |