In this article, a new fractional mathematical model is presented to investigate the contagion of the human immunodeficiency virus (HIV). This model is constructed via recent improved fractional differential and integral operators. Other operators like Caputo, Riemann-Liouville, Katugampola, Jarad and Hadamard are being extended and generalized by these improved fractional differential and integral operators. Banach's and Leray-Schauder nonlinear alternative fixed point theorems are utilized to examine the existence and uniqueness results of the proposed fractional HIV model. Moreover, different kinds of Ulam stability for the fractional HIV model are established. It is simple to recognize that the extracted results can be reduced to some results acquired in multiple works of literature.
Citation: Abd-Allah Hyder, Mohamed A. Barakat, Doaa Rizk, Rasool Shah, Kamsing Nonlaopon. Study of HIV model via recent improved fractional differential and integral operators[J]. AIMS Mathematics, 2023, 8(1): 1656-1671. doi: 10.3934/math.2023084
In this article, a new fractional mathematical model is presented to investigate the contagion of the human immunodeficiency virus (HIV). This model is constructed via recent improved fractional differential and integral operators. Other operators like Caputo, Riemann-Liouville, Katugampola, Jarad and Hadamard are being extended and generalized by these improved fractional differential and integral operators. Banach's and Leray-Schauder nonlinear alternative fixed point theorems are utilized to examine the existence and uniqueness results of the proposed fractional HIV model. Moreover, different kinds of Ulam stability for the fractional HIV model are established. It is simple to recognize that the extracted results can be reduced to some results acquired in multiple works of literature.
[1] | W. H. Organization, HIV, 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids. |
[2] | R. A. Weiss, How does HIV cause AIDS, Science, 260 (1993), 1273–1279. https://doi.org/10.1126/science.8493571 doi: 10.1126/science.8493571 |
[3] | X. Zhang, L. Liu, W. Chen, F. Wang, Y. Cheng, Y. Liu, et al., Gestational Leucylation suppresses embryonic T-box transcription factor 5 signal and causes congenital heart disease, Adv. Sci., 9 (2022), 2201034. https://doi.org/10.1002/advs.202201034 doi: 10.1002/advs.202201034 |
[4] | X. Zhang, Y. Qu, L. Liu, Y. Qiao, H. Geng, Y. Lin, et al., Homocysteine inhibits pro-insulin receptor cleavage and causes insulin resistance via protein cysteine-homocysteinylation, Cell Rep., 37 (2021), 109821. https://doi.org/10.1016/j.celrep.2021.109821 doi: 10.1016/j.celrep.2021.109821 |
[5] | K. Cai, F. Wang, J. Lu, A. Shen, S. Zhao, W. Zang, et al., Nicotinamide mononucleotide alleviates cardiomyopathy phenotypes caused by short-chain enoyl-CoA hydratase 1 deficiency, JACC: Basic Trans. Sci., 7 (2022), 348–362. https://doi.org/10.1016/j.jacbts.2021.12.007 doi: 10.1016/j.jacbts.2021.12.007 |
[6] | F. Kirchhoff, Encyclopedia of AIDS, Springer, 2013. https://doi.org/10.1007/978-1-4614-9610-6-60-1 |
[7] | M. A. Nowak, S. Bonhoeffer, G. M. Shaw, R. M. May, Anti-viral drug treatment: Dynamics of resistance in free virus and infected cell populations, J. Theor. Biol., 184 (1997), 203–217. https://doi.org/10.1006/jtbi.1996.0307 doi: 10.1006/jtbi.1996.0307 |
[8] | T. B. Kepler, A. S. Perelson, Drug concentration heterogeneity facilitates the evolution of drug resistance, Proc. Natl. Acad. Sci. USA., 95 (1998), 11514–11519. https://doi.org/10.1073/pnas.95.20.11514 doi: 10.1073/pnas.95.20.11514 |
[9] | R. J. Smith, L. M. Wahl, Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects, Bull. Math. Biol., 66 (2004), 1259–1283. https://doi.org/10.1016/j.bulm.2003.12.004 doi: 10.1016/j.bulm.2003.12.004 |
[10] | Z. Cao, Y. Wang, W. Zheng, L. Yin, Y. Tang, W. Miao, et al., The algorithm of stereo vision and shape from shading based on endoscope imaging, Biomed. Signal Process. Control, 76 (2022), 103658. https://doi.org/10.1016/j.bspc.2022.103658 doi: 10.1016/j.bspc.2022.103658 |
[11] | F. Brauer, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, Springer, 2001. https://doi.org/10.1007/978-1-4614-1686-9 |
[12] | C. Duan, H. Deng, S. Xiao, J. Xie, H. Li, X. Zhao, et al., Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning, Eur. Radiol., 32 (2022), 702–713. https://doi.org/10.1007/s00330-021-08126-y doi: 10.1007/s00330-021-08126-y |
[13] | A. S. Perelson, D. E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-a doi: 10.1016/0025-5564(93)90043-a |
[14] | H. C. Tuckwell, F. Y. M. Wan, On the behavior of solutions in viral dynamical models, Biosystems, 73 (2004), 157–161. https://doi.org/10.1016/j.biosystems.2003.11.004 doi: 10.1016/j.biosystems.2003.11.004 |
[15] | L. Rong, M. A. Gilchrist, Z. Feng, A. S. Perelson, Modeling within-host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility, J. Theor. Biol., 247 (2007), 804–818. https://doi.org/10.1016/j.jtbi.2007.04.014 doi: 10.1016/j.jtbi.2007.04.014 |
[16] | P. K. Srivastava, M. Banerjee, P. Chandra, Modeling the drug therapy for HIV infection, J. Biol. Syst., 17 (2009), 213–223. https://doi.org/10.1142/S0218339009002764 doi: 10.1142/S0218339009002764 |
[17] | L. Liu, J. Wang, L. Zhang, S. Zhang, Multi-AUV dynamic maneuver countermeasure algorithm based on interval information game and fractional-order DE, Fractal Fract., 6 (2022), 235. https://doi.org/10.3390/fractalfract6050235 doi: 10.3390/fractalfract6050235 |
[18] | C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay, Chaos Solitons Fractals, 157 (2022), 111916. https://doi.org/10.1016/j.chaos.2022.111916 doi: 10.1016/j.chaos.2022.111916 |
[19] | A. Shukla, V. Vijayakumar, K. S. Nisar, A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order $r\in(1, 2)$, Chaos Solitons Fractals, 154 (2022), 111615. https://doi.org/10.1016/j.chaos.2021.111615 doi: 10.1016/j.chaos.2021.111615 |
[20] | S. Kumar, A. Kumar, B. Samet, H. Dutta, A study on fractional host–parasitoid population dynamical model to describe insect species, Numer. Methods Part. Differ. Equ., 37 (2021), 1673–1692. https://doi.org/10.1002/num.22603 doi: 10.1002/num.22603 |
[21] | S. Kumar, R. P. Chauhan, S. Momani, S. Hadid, Numerical investigations on COVID-19 model through singular and non-singular fractional operators, Numer. Methods Part. Differ. Equ., 37 (2020), 1–27. https://doi.org/10.1002/num.2270 doi: 10.1002/num.2270 |
[22] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[23] | J. A. T. Machado, M. E. A. Mata, A fractional perspective to the bond graph modelling of world economies, Nonlinear Dyn., 80 (2015), 1839–1852. https://doi.org/10.1007/s11071-014-1334-0 doi: 10.1007/s11071-014-1334-0 |
[24] | S. Zeng, J. Cen, A. Atangana, V. T. Nguyen, Qualitative analysis of solutions of obstacle elliptic inclusion problem with fractional Laplacian, Z. Angew. Math. Phys., 72 (2021), 30. https://doi.org/10.1007/s00033-020-01460-z doi: 10.1007/s00033-020-01460-z |
[25] | Y. Penga, J. Zhaoa, K. Sepehrnoori, Z. Li, Fractional model for simulating the viscoelastic behavior of artificial fracture in shale gas, Eng. Fract. Mech., 228 (2020), 106892. https://doi.org/10.1016/j.engfracmech.2020.106892 doi: 10.1016/j.engfracmech.2020.106892 |
[26] | A. Hyder, M. A. Barakat, A. Fathallah, Enlarged integral inequalities through recent fractional generalized operators, J. Inequal. Appl., 2022 (2022), 95. https://doi.org/10.1186/s13660-022-02831-y doi: 10.1186/s13660-022-02831-y |
[27] | S. Kumar, A. Kumar, M. Jleli, A numerical analysis for fractional model of the spread of pests in tea plants, Numer. Methods Part. Differ. Equ., 38 (2022), 540–565. https://doi.org/10.1002/num.22663 doi: 10.1002/num.22663 |
[28] | S. Kumar, R. P. Chauhan, S. Momani, S. Hadid, A study of fractional TB model due to mycobacterium tuberculosis bacteria, Chaos Solitons Fractals, 153 (2021), 111452. https://doi.org/10.1016/j.chaos.2021.111452 doi: 10.1016/j.chaos.2021.111452 |
[29] | M. A. Barakat, A. H. Soliman, A. Hyder, Langevin equations with generalized proportional Hadamard–Caputo fractional derivative, Comput. Intell. Neurosci., 2021 (2021), 6316477. https://doi.org/10.1155/2021/6316477 doi: 10.1155/2021/6316477 |
[30] | M. A. Khan, S. Ullah, S. Kumar, A robust study on 2019-nCOV outbreaks through non-singular derivative, Eur. Phys. J. Plus, 136 (2021), 168. https://doi.org/10.1140/epjp/s13360-021-01159-8 doi: 10.1140/epjp/s13360-021-01159-8 |
[31] | A. Hyder, A. A. Almoneef, H. Budak, M. A. Barakat, On new fractional version of generalized Hermite-Hadamard inequalities, Mathematics, 10 (2022), 3337. https://doi.org/10.3390/math10183337 doi: 10.3390/math10183337 |
[32] | S. Kumar, A. Kumar, B. Samet, J. F. Gómez-Aguilar, M. S. Osman, A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment, Chaos Solitons Fractals, 141 (2020), 110321. https://doi.org/10.1016/j.chaos.2020.110321 doi: 10.1016/j.chaos.2020.110321 |
[33] | B. H. Lichae, J. Biazar, Z. Ayati, The fractional differential model of HIV-1 infection of $\text {CD}4^+$ T-Cells with description of the effect of antiviral drug treatment, Comput. Math. Methods Med., 2019 (2019), 4059549. https://doi.org/10.1155/2019/4059549 doi: 10.1155/2019/4059549 |
[34] | A. J. Ferrari, E. A. Santillan Marcus, Study of a fractional-order model for HIV infection of CD4$^+$ T-Cells with treatment, J. Fractional Calculus Appl., 11 (2020), 12–22. |
[35] | G. Nazir, K. Shah, A. Debbouche, R. A. Khan, Study of HIV mathematical model under nonsingular kernel type derivative of fractional order, Chaos Solitons Fractals, 139 (2020), 110095. https://doi.org/10.1016/j.chaos.2020.110095 doi: 10.1016/j.chaos.2020.110095 |
[36] | H. Khan, J. F. Gómez-Aguilar, A. Alkhazzan, A. Khan, A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler law, Math. Methods Appl. Sci., 43 (2020), 3786–3806. https://doi.org/10.1002/mma.6155 doi: 10.1002/mma.6155 |
[37] | J. Kongson, C. Thaiprayoon, W. Sudsutad, Analysis of a fractional model for HIV CD4$^+$ T-cells with treatment under generalized Caputo fractional derivative, AIMS Math., 6 (2021), 7285–7304. https://doi.org/10.3934/math.2021427 doi: 10.3934/math.2021427 |
[38] | M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Math., 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385 |
[39] | K. Nonlaopon, M. Naeem, A. M. Zidan, R. Shah, A. Alsanad, A. Gumaei, Numerical investigation of the time-fractional Whitham-Broer-Kaup equation involving without singular kernel operators, Complexity, 2021 (2021), 1–21. https://doi.org/10.1155/2021/7979365 doi: 10.1155/2021/7979365 |
[40] | N. A. Shah, H. A. Alyousef, S. El-Tantawy, R. Shah, J. D. Chung, Analytical investigation of fractional-order Korteweg-de-Vries-type equations under Atangana-Baleanu-Caputo operator: Modeling nonlinear waves in a plasma and fluid, Symmetry, 14 (2022), 739. https://doi.org/10.3390/sym14040739 doi: 10.3390/sym14040739 |
[41] | A. Hyder, M. A. Barakat, Novel improved fractional operators and their scientific applications, Adv. Differ. Equ., 2021 (2021), 389. https://doi.org/10.1186/s13662-021-03547-x doi: 10.1186/s13662-021-03547-x |
[42] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. |
[43] | F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z |
[44] | A. Shukla, N. Sukavanam, D. N. Pandey, Controllability of semilinear stochastic control system with finite delay, IMA J. Math. Control Inf., 35 (2018), 427–449. https://doi.org/10.1093/imamci/dnw059 doi: 10.1093/imamci/dnw059 |
[45] | C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, A. Shukla, K. S. Nisar, A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order $r\in(1, 2)$ with delay, Chaos Solitons Fractals, 153 (2021), 111565. https://doi.org/10.1016/j.chaos.2021.111565 doi: 10.1016/j.chaos.2021.111565 |
[46] | A. Shukla, N. Sukavanam, D. N. Pandey, Approximate controllability of semilinear stochastic control system with nonlocal conditions, Nonlinear Dyn. Syst. Theory, 15 (2015), 321–333. |
[47] | U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062 |
[48] | A. A. Kilbas, Hadamard type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. |