This work aims to provide the numerical performances of the computer epidemic virus model with the time delay effects using the stochastic Levenberg-Marquardt backpropagation neural networks (LMBP-NNs). The computer epidemic virus model with the time delay effects is categorized into four dynamics, the uninfected S(x) computers, the latently infected L(x) computers, the breaking-out B(x) computers, and the antivirus PC's aptitude R(x). The LMBP-NNs approach has been used to numerically simulate three cases of the computer virus epidemic system with delay effects. The stochastic framework for the computer epidemic virus system with the time delay effects is provided using the selection of data with 11%, 13%, and 76% for testing, training, and verification together with 15 neurons. The proposed and data-based Adam technique is overlapped to execute the LMBP-NNs method's exactness. The constancy, authentication, precision, and capability of the LMBP-NNs scheme are perceived with the analysis of the state transition measures, regression actions, correlation performances, error histograms, and mean square error measures.
Citation: Wajaree Weera, Thongchai Botmart, Teerapong La-inchua, Zulqurnain Sabir, Rafaél Artidoro Sandoval Núñez, Marwan Abukhaled, Juan Luis García Guirao. A stochastic computational scheme for the computer epidemic virus with delay effects[J]. AIMS Mathematics, 2023, 8(1): 148-163. doi: 10.3934/math.2023007
This work aims to provide the numerical performances of the computer epidemic virus model with the time delay effects using the stochastic Levenberg-Marquardt backpropagation neural networks (LMBP-NNs). The computer epidemic virus model with the time delay effects is categorized into four dynamics, the uninfected S(x) computers, the latently infected L(x) computers, the breaking-out B(x) computers, and the antivirus PC's aptitude R(x). The LMBP-NNs approach has been used to numerically simulate three cases of the computer virus epidemic system with delay effects. The stochastic framework for the computer epidemic virus system with the time delay effects is provided using the selection of data with 11%, 13%, and 76% for testing, training, and verification together with 15 neurons. The proposed and data-based Adam technique is overlapped to execute the LMBP-NNs method's exactness. The constancy, authentication, precision, and capability of the LMBP-NNs scheme are perceived with the analysis of the state transition measures, regression actions, correlation performances, error histograms, and mean square error measures.
[1] | B. K. Mishra, D. Saini, Mathematical models on computer viruses, Appl. Math. Comput., 187 (2007), 929–936. https://doi.org/10.1016/j.amc.2006.09.062 doi: 10.1016/j.amc.2006.09.062 |
[2] | A. M. El-Sayed, A. A. Arafa, M. Khalil, A. Hassan, A mathematical model with memory for propagation of computer virus under human intervention, Prog. Fract. Differ. Appl., 2 (2016), 105–113. https://doi.org/10.18576/pfda/020203 doi: 10.18576/pfda/020203 |
[3] | M. Peng, X. He, J. Huang, T. Dong, Modeling computer virus and its dynamics, Math. Probl. Eng., 2013 (2013), 842614. https://doi.org/10.1155/2013/842614 doi: 10.1155/2013/842614 |
[4] | A. M. del Rey, Mathematical modeling of the propagation of malware: a review, Security Comm. Networks, 8 (2015), 2561–2579. https://doi.org/10.1002/sec.1186 doi: 10.1002/sec.1186 |
[5] | A. M. del Rey, A SIR e-Epidemic model for computer worms based on cellular automata, In: Advances in artificial intelligence, Berlin: Springer, 2013,228–238. https://doi.org/10.1007/978-3-642-40643-0_24 |
[6] | A. M. del Rey, G. R. Sánchez, A discrete mathematical model to simulate malware spreading, Int. J. Mod. Phys. C, 23 (2012), 1250064. https://doi.org/10.1142/S0129183112500647 doi: 10.1142/S0129183112500647 |
[7] | Y. Xu, J. Ren, Propagation effect of a virus outbreak on a network with limited anti-virus ability, Plos One, 11 (2016), e0164415. https://doi.org/10.1371/journal.pone.0164415 doi: 10.1371/journal.pone.0164415 |
[8] | Y. G. Sánchez, Z. Sabir, J. L. Guirao, Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID-19), Fractals, 28 (2020), 2040026. https://doi.org/10.1142/S0218348X20400265 doi: 10.1142/S0218348X20400265 |
[9] | Y. G. Sánchez, Z. Sabir, H. Günerhan, H. M. Baskonus, Analytical and approximate solutions of a novel nervous stomach mathematical model, Discrete Dyn. Nat. Soc., 2020 (2020), 5063271. https://doi.org/10.1155/2020/5063271 doi: 10.1155/2020/5063271 |
[10] | M. S. S. Khan, A computer virus propagation model using delay differential equations with probabilistic contagion and immunity, 2014, arXiv: 1410.5718. |
[11] | U. Fatima, M. Ali, N. Ahmed, M. Rafiq, Numerical modeling of susceptible latent breaking-out quarantine computer virus epidemic dynamics, Heliyon, 4 (2018), e00631. https://doi.org/10.1016/j.heliyon.2018.e00631 doi: 10.1016/j.heliyon.2018.e00631 |
[12] | B. K. Mishra, N. Jha, SEIQRS model for the transmission of malicious objects in computer network, Appl. Math. Model., 34 (2010), 710–715. https://doi.org/10.1016/j.apm.2009.06.011 doi: 10.1016/j.apm.2009.06.011 |
[13] | A. S. Bist, Mathematical approaches for computer virus, Int. J. Eng. Sci. Res. Technol., 1 (2012), 429–431. |
[14] | Y. Öztürk, M. Gülsu, Numerical solution of a modified epidemiological model for computer viruses, Appl. Math. Model., 39 (2015), 7600–7610. https://doi.org/10.1016/j.apm.2015.03.023 doi: 10.1016/j.apm.2015.03.023 |
[15] | J. Amador, J. R. Artalejo, Stochastic modeling of computer virus spreading with warning signals, J. Frankl. Inst., 350 (2013), 1112–1138. https://doi.org/10.1016/j.jfranklin.2013.02.008 doi: 10.1016/j.jfranklin.2013.02.008 |
[16] | M. Umar, Z. Sabir, M. A. Z. Raja, Intelligent computing for numerical treatment of nonlinear prey-predator models, Appl. Soft Comput., 80 (2019), 506–524. https://doi.org/10.1016/j.asoc.2019.04.022 doi: 10.1016/j.asoc.2019.04.022 |
[17] | M. Umar, F. Amin, H. A. Wahab, D. Baleanu, Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery, Appl. Soft Comput., 85 (2019), 105826. https://doi.org/10.1016/j.asoc.2019.105826 doi: 10.1016/j.asoc.2019.105826 |
[18] | M. Umar, Z. Sabir, M. A. Z. Raja, H. M. Baskonus, S. W. Yao, E. Ilhan, A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells, Results Phys., 25 (2021), 104235. https://doi.org/10.1016/j.rinp.2021.104235 doi: 10.1016/j.rinp.2021.104235 |
[19] | M. Umar, Z. Sabir, M. A. Z. Raja, Y. G. Sánchez, A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever, Results Phys., 19 (2020), 103585. https://doi.org/10.1016/j.rinp.2020.103585 doi: 10.1016/j.rinp.2020.103585 |
[20] | A. Lanz, D. Rogers, T. L. Alford, An epidemic model of malware virus with quarantine, J. Adv. Math. Comput. Sci., 33 (2019), 1–10. |
[21] | O. Bukola, A. O. Adetunmbi, T. T. Yusuf, An SIRS model of virus epidemic on a computer network, J. Adv. Math. Comput. Sci., 17 (2016), 1–12. https://doi.org/10.9734/BJMCS/2016/24816 doi: 10.9734/BJMCS/2016/24816 |
[22] | M. S. Arif, A. Raza, W. Shatanawi, M. Rafiq, M. Bibi, A stochastic numerical analysis for computer virus model with vertical transmission over the internet, Comput. Mater. Con., 61 (2019), 1025–1043. https://doi.org/10.32604/cmc.2019.08405 doi: 10.32604/cmc.2019.08405 |
[23] | M. S. Arif, A. Raza, M. Rafiq, M. Bibi, J. N. Abbasi, A. Nazeer, et al., Numerical simulations for stochastic computer virus propagation model, Comput. Mater. Con., 61 (2019), 61–77. https://doi.org/10.32604/cmc.2020.08595 doi: 10.32604/cmc.2020.08595 |
[24] | E. F. D. Goufo, Y. Khan, Q. A. Chaudhry, HIV and shifting epicenters for COVID-19, an alert for some countries, Chaos Soliton. Fract., 139 (2020), 110030. https://doi.org/10.1016/j.chaos.2020.110030 doi: 10.1016/j.chaos.2020.110030 |
[25] | N. Faraz, Y. Khan, E. D. Goufo, A. Anjum, A. Anjum, Dynamic analysis of the mathematical model of COVID-19 with demographic effects, Z. Naturforsch. C, 75 (2020), 389–396. https://doi.org/10.1515/znc-2020-0121 doi: 10.1515/znc-2020-0121 |
[26] | Z. Sabir, Stochastic numerical investigations for nonlinear three-species food chain system, Int. J. Biomath., 15 (2022), 2250005. https://doi.org/10.1142/S179352452250005X doi: 10.1142/S179352452250005X |
[27] | M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics, Symmetry, 12 (2020), 1628. https://doi.org/10.3390/sym12101628 doi: 10.3390/sym12101628 |
[28] | M. Umar, Z. Sabir, F. Amin, J. L. Guirao, M. A. Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells, Eur. Phys. J. Plus, 135 (2020), 403. https://doi.org/10.1140/epjp/s13360-020-00417-5 doi: 10.1140/epjp/s13360-020-00417-5 |
[29] | Z. Sabir, Neuron analysis through the swarming procedures for the singular two-point boundary value problems arising in the theory of thermal explosion, Eur. Phys. J. Plus, 137 (2022), 638. https://doi.org/10.1140/epjp/s13360-022-02869-3 doi: 10.1140/epjp/s13360-022-02869-3 |
[30] | B. Wang, J. F. Gomez-Aguilar, Z. Sabir, M. A. Z. Raja, W. F. Xia, H. Jahanshahi, et al., Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks, Fractals, 2022 (2022), 2240147. https://doi.org/10.1142/S0218348X22401478 doi: 10.1142/S0218348X22401478 |
[31] | T. Saeed, Z. Sabir, M. S. Alhodaly, H. H. Alsulami, Y. G. Sánchez, An advanced heuristic approach for a nonlinear mathematical based medical smoking model, Results Phys., 32 (2022), 105137. https://doi.org/10.1016/j.rinp.2021.105137 doi: 10.1016/j.rinp.2021.105137 |
[32] | Z. Sabir, H. A. Wahab, Evolutionary heuristic with Gudermannian neural networks for the nonlinear singular models of third kind, Phys. Scr., 96 (2021), 125261. https://doi.org/10.1088/1402-4896/ac3c56 doi: 10.1088/1402-4896/ac3c56 |
[33] | A. Raza, U. Fatima, M. Rafiq, N. Ahmed, I. Khan, K.S. Nisar, et al., Mathematical analysis and design of the nonstandard computational method for an epidemic model of computer virus with delay effect: application of mathematical biology in computer science, Results Phys., 21 (2021), 103750. https://doi.org/10.1016/j.rinp.2020.103750 doi: 10.1016/j.rinp.2020.103750 |
[34] | K. Mukdasai, Z. Sabir, M. A. Z. Raja, R. Sadat, M. R. Ali, P. Singkibud, A numerical simulation of the fractional order Leptospirosis model using the supervise neural network, Alex. Eng. J., 61 (2022), 12431–12441. https://doi.org/10.1016/j.aej.2022.06.013 doi: 10.1016/j.aej.2022.06.013 |
[35] | T. Botmart, Z. Sabir, M. A. Z. Raja, M. R. Ali, R. Sadat, A. A. Aly, et al., A hybrid swarming computing approach to solve the biological nonlinear Leptospirosis system, Biomed. Signal Proces., 77 (2022), 103789. https://doi.org/10.1016/j.bspc.2022.103789 doi: 10.1016/j.bspc.2022.103789 |
[36] | M. De la Sen, S. Alonso-Quesada, A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. https://doi.org/10.1016/j.amc.2015.08.099 doi: 10.1016/j.amc.2015.08.099 |
[37] | Q. Gao, J. Zhuang, Stability analysis and control strategies for worm attack in mobile networks via a VEIQS propagation model, Appl. Math. Comput., 368 (2020), 124584. https://doi.org/10.1016/j.amc.2019.124584 doi: 10.1016/j.amc.2019.124584 |
[38] | H. Zhou, S. Shen, J. Liu, Malware propagation model in wireless sensor networks under attack-defense confrontation, Comput. Commun., 162 (2020), 51–58. https://doi.org/10.1016/j.comcom.2020.08.009 doi: 10.1016/j.comcom.2020.08.009 |