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Abstract: This work aims to provide the numerical performances of the computer epidemic virus 

model with the time delay effects using the stochastic Levenberg-Marquardt backpropagation neural 

networks (LMBP-NNs). The computer epidemic virus model with the time delay effects is categorized 

into four dynamics, the uninfected S(x) computers, the latently infected L(x) computers, the breaking-

out B(x) computers, and the antivirus PC’s aptitude R(x). The LMBP-NNs approach has been used to 

numerically simulate three cases of the computer virus epidemic system with delay effects. The 

stochastic framework for the computer epidemic virus system with the time delay effects is provided 

using the selection of data with 11%, 13%, and 76% for testing, training, and verification together with 

15 neurons. The proposed and data-based Adam technique is overlapped to execute the LMBP-NNs 

method’s exactness. The constancy, authentication, precision, and capability of the LMBP-NNs 

scheme are perceived with the analysis of the state transition measures, regression actions, correlation 

performances, error histograms, and mean square error measures. 
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1. Introduction 

A computer virus is an undesirable database that has the potential to make copies, disrupt 

operations, and steal user’s sensitive information. The general virus sources are separated from the 

unknown emails or damaged relationships by clicking the virus-infected files and removable storage 

policies. An infected computer through the virus is considered dangerous for the user’s secrecy. A 

decade ago, the Crypto locker virus was first released and spread through email attachments. The user’s 

file is encoded and cannot use statistics. The hackers made thirty million dollars in 3 months. One of 

the famous, popular, and virulent computer viruses named “I Love You” was recognized for 22 years. 

The email attachments were the reason the virus spread. The earnings of this program were 15 billion 

dollars. The quick spreading virus is recognized as My Doom which had been infected by all emails 

around 25%, and the hackers earned lots. A few more dangerous computer viruses are Stuxnet and 

Storm worm. Recently, a vital query was, how the viruses attack computers and Laptops? A few vital 

signs have been considered to examine the contaminated-based nodes. The system does not perform, 

gets slow clicks icons, and switches off shortly. The default browser homepage changes the hidden 

icons through the firewall and desktop. Mishra et al. [1] proposed a mathematical computer virus 

system to consider different forms. Sayed et al. [2] presented a partial differential system with the virus 

spread. Peng et al. [3] studied the numerous subclasses based on the computers using the recovered, 

susceptible, and exposed. The computer system is used to the immunity that the antivirus software. 

Rey [4,5] designed a critical assessment of mathematical systems with improvements of the alternative 

complexities along with the infected, susceptible, and recovered models. In another study, Rey et al. [6] 

discussed a new technique that analyzes the widely disseminated computer virus utilizing the discrete 

range. Xu et al. [7] provided the virus spreading using the network nodes in the limited form of the 

antivirus ability. Sanchez et al. [8,9] proposed a mathematical model based on the coronavirus SITR 

dynamical model and nervous stomach nonlinear system. Khan [10] created a mathematical model for 

SEIRS that incorporates the drawbacks of the SIR method. Khan et al. [10] studied a propagating 

computer population system. Fatima et al. [11] provided a structure based on the investigation of 

preserving the computer virus system with a dormant period of isolation. Mishra et al. [12] explored 

the SEIQRS mathematical framework for virus spreading using computer networks to pro the 

numerical finding Bist [13] studied different features of mathematical systems to analyze the computer 

viruses along with malware replication using different schemes. Oztürk et al. [14] investigated an 

updated SIR version of the system to estimate the malware results. Amador et al. [15] analyzed the 

SIRS system with the spread of malware dynamics based on the warning signs. Umar et al. [16–19] 

proposed various biological models and numerical performances. Lanz et al. [20] discussed the 

SEI1I2QR system to authenticate the infective performances of the system. Bukola et al. [21] designed 

and examined the SIRS system with the status of bug-free asymptotically constant. Arif et al. [22–23] 

considered the dynamical structure of the stochastic virus system using the computer population and 

different computational performances. The coronavirus dynamics with the delay strategies, e.g., travel 

restrictions, quarantine, and extended breaks to control the infectious disease spread, are proposed [24,25]. 
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These investigations aim to provide the numerical performances of the computer epidemic virus 

model with the time delay effects using the stochastic Levenberg-Marquardt backpropagation neural 

networks (LMBP-NNs). The stochastic LMBP-NNs approach has never been used to illustrate the 

dynamics of a computer epidemic virus system with delay effects. On the other hand, stochastic solvers 

have been designated to solve various complex, nonlinear, and stiff dynamical systems. To mention 

some of the applications are food chain systems [26], the coronavirus dynamical model [27], HIV 

infection system [28], singular thermal explosion theory model [29], eye surgery system [30], 

differential model of the smoking model [31], and singular model [32]. The novel study features are 

signified as: 

• A nonlinear computer epidemic virus model with the time delay effects is presented numerically. 

• Three cases of the computer virus epidemic system with the delay effects have been numerically 

stimulated using the LMBP-NNs scheme. 

• The exactness of the LMBP-NNs solver is performed based on the overlapping of the proposed 

and data-based reference Adam method. 

• The consistency of the LMBP-NNs solver is authenticated by using the absolute error (AE) 

performances of the computer virus epidemic system with the delay effects. 

• The state transitions (STs) measures, regression actions, correlation performances, error 

histograms (EHs), and mean square error (MSE) measures are provided using the LMBP-NNs 

solver for the computer epidemic virus system with the delay effects. 

The other paper parts are organized as follows: Section 2 shows the computer epidemic virus 

model. The designed network structure is shown in Section 3. Section 4 narrates the results simulations. 

Conclusions are discussed in the final Section. 

2. Mathematical model 

This section performs the mathematical structure of the computer epidemic virus system with the 

delay effects. The system is categorized into four dynamics, the uninfected S(x) computers, the latently 

infected L(x) computers, the breaking-out B(x) computers and the antivirus PC’s aptitude R(x). The 

mathematical structure of the computer virus epidemic system with the delay effects along with the 

initial conditions (ICs) is given as [33]: 
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The parameter based on the computer epidemic virus dynamical model with the time delay effects 

is tabulated in Table 1, while the flow illustrations are provided in Figure 1. 

 

 



151 

AIMS Mathematics  Volume 8, Issue 1, 148–163. 

Table 1. Detailed parameters of the computer dynamical epidemic virus system with the 

delay effects. 

Parameters Details 
  Recruitment and disinterest rate based on the new and old PCs in the database 

  Bilinear form of the incidence ratio based on the uninfected and latently infected PCs 

  Latently infected rate with breaking-out PCs 

  Natural rate of mortality with infectious PCs 

r  Breaking-out rate of PC to get the antivirus aptitude 

  Antivirus ability rate of those who hold PC with viruses 

  Delay term 

x
 

Time 

1 2 3 4, , ,c c c c  ICs 

 

Figure 1. Flow map of the computer epidemic virus dynamical model with the time delay 

effects. 

3. Methodology: LMBP-NNs scheme 

In this section, the structure of the LMBP-NNs scheme is presented to the computer dynamical 

epidemic virus system with the delay effects by using the necessary performances of the procedure 

along with its implementation. Figure 2 shows the optimization performances of the multi-layer 

stochastic process based on the LMBP-NNs technique. The stochastic framework of the computer 

epidemic virus model with the time delay effects is provided using data selection with 11%, 13% and 

76% for testing, training and verification. Fifteen numbers of neurons have been used in this study to 

solve the delay differential model. 
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1. Model: Computer epidemic virus delay system

3. Results

EHs

Proposed stochastic LMBP-NNs technique results using the STs measures, regression actions, correlation 
performances, EHs and MSE measures for the computer epidemic virus model with the time delay effects

AE

Obtained performances
Compute the stochastic LMBP-NNs technique 
through the reference data to authenticate the 

approximate solutions of the numerical 
performances of the computer epidemic virus 

model with the time delay effects

Reference solutions
The reference results based on the designed dataset 

through the Adam solutions for the numerical 
simulations of the computer epidemic virus model 

with the time delay effects

2. Methodology: LMBP-NNs technique

Flow map of the model

Stochastic Solvers
Design of a multi-layer procedure using the stochastic 

LMBP-NNs technique for the numerical simulations of the 
computer epidemic virus model with the time delay 

effects

The computer epidemic virus model with the time delay 

effects is categorized into four dynamics, the uninfected 

S(x) computers, the latently infected L(x) computers, the 

breaking-out B(x) computers and the antivirus PC s 

aptitude R(x)

Mathematical model

 

Figure 2. Numerical LMBP-NNs technique for the numerical simulations of the model. 

The setting of the parameters based on the LMBP-NNs procedure is specified to the computer 

dynamical epidemic virus system with the delay effects provided in Table 2. The slight alteration and 

variation can conclude the poor performances, i.e., untimely convergence. Consequently, these options 
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will be carefully included after substantial numerical trial and expertise. The LMB algorithms 

implementation process and necessary additional theoretical details are shown in [34,35]. 

Table 2. Parameter settings to execute the LMBP-NNs procedure. 

Index Settings 

Verification data 76% 

Fitness goal (MSE) 0 

Test data 11% 

Maximum learning iterations 680 

Decreasing mu term 0.2 

Selection of statics Random 

Maximum mu values 1010 

Output/input/ hidden layers Single 

Dataset generation Adam scheme 

Adaptive parameter (mu) 0.003 

Train data 13% 

Increasing mu terms 9 

Hidden neurons 15 

Fail of authentication count 6 

Minimum gradient values 10-8 

Adam solver Execution of Adam method and terminating criteria Default 

4. Methodology: MWNN-GA-ASA scheme 

This section presents the solutions to the dynamical form of the mathematical model. These types 

of mathematical dynamical models have been reported in various studies [36–38]. The numerical 

results of the computer epidemic virus of the time delay system using the LMBP-NNs scheme are 

shown in this section. The mathematical form of each case is shown as: 

Case 1: Consider 0.5 = , 0.35 = , 0.2 = , 0.15 = , 0.4 = , 0.4r = , 1 0.4,c =  2 0.3,c =
 

3 0.2c =  and 4 0.1c =  is given in Eq (1) as: 
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Case 2: Consider 0.5 = , 0.6 = , 0.2 = , 0.15 = , 0.4 = , 0.4r = , 1 0.4,c =  2 0.3,c =
 

3 0.2c =  and 4 0.1c =  is given in Eq (1) as: 
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Case 3: Consider 0.5 = , 0.9 = , 0.2 = , 0.15 = , 0.4 = , 0.4r = , 1 0.4,c =  2 0.3,c =
 

3 0.2c =  and 4 0.1c =  is given in Eq (1) as: 
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The solutions to the computer epidemic virus system with the delay effects using the LMBP-NNs 

scheme are provided for three variations based on the ICs. The output, hidden, and input layer 

construction is presented in Figure 3. 

 

Figure 3. Hidden input and output layers construction for the computer epidemic model. 

In Figures 4–6, the LMBP-NNs technique is used to draw the numerical representations of three 

distinct variants based on the ICs for the computer virus epidemic system with the delay effects. The 

STs measures and best assessment values are derived in Figures 4 and 5. The STs performances and 

MSE measures for the best curves, verification, and training are presented for three different variations 

based on the ICs. These precise results based on the computer virus epidemic model with the delay effects 

are derived at epochs 42, 17, and 53, measured as 1.2145×10-10, 2.9103×10-11 and 1.3341×10-10, 

respectively. The performances of the gradient operators have been reported in Figure 4 based on the 

computer virus epidemic system with the delay effects. These gradient operator performances have 
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been provided as 6.9708×10-8, 7.3422×10-8, and 9.9456×10-8. These graphical plot representations 

indicate the convergence of the LMBP-NNs scheme of the computer epidemic virus system. Figure 5 

validates the fitting cure design to perform the numerical simulations of the computer virus epidemic 

system with the delay effects. The graphical curve plots compare the results for each case of the model. 

The error plots through the training, verification, and testing performances have been indicated in the 

computer virus epidemic model with the delay effects using the LMBP-NNs procedure. The EHs 

illustrations and the regression measures have been presented in Figure 5 using the computer virus 

epidemic system using the LMBP-NNs procedure. The EHs values have been presented as 1.43×10-6, 

2.68×10-7 and 2.08×10-6 for each model variation using the LMBP-NNs procedure. The regression plot 

illustrations are reported in Figure 6 to indicate the correlation measures. It is observed that the 

correlation measures are reported as 1 for individual cases of the model. The testing, training, and 

authentication plots label the exactness of the LMBP-NNs procedure to indicate the numerical 

simulations of the model using the LMBP-NNs procedure. The convergence plots obtained through the 

MSE measures using the testing, validation, training, epochs, and complexity are provided in Table 3 for 

the computer epidemic virus model using the LMBP-NNs procedure. 

Table 3. Designed LMBP-NNs procedure for the computer epidemic virus model with the 

time delay effects. 

Case 
MSE 

Gradient Mu Iterations Performance Time 
Testing Training Endorsement 

1 1.04×10-10 6.88×10-11 1.21×10-10 9.97×10-8 1× 10-10 42 6.89×10-11 03 

2 3.09×10-11 4.67×10-12 2.91×10-11 7.34×10-8 1× 10-11 17 4.68×10-12 02 

3 1.28×10-10 6.11×10-11 1.33×10-10 9.95×10-8 1× 10-10 53 6.11×10-11 04 
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Figure 4. MSE measures and STs performances for the computer epidemic virus model 

with the time delay effects using the LMBP-NNs procedure. 
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Figure 5. EHs and results for the computer epidemic virus model with the time delay 

effects using the LMBP-NNs procedure. 
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Figure 6. Regression plots for computer virus epidemic system with the delay effects using 

the LMBP-NNs procedure. 

The performance outcomes and absolute error (AE) values from three validation, testing, and 

training cases utilizing the LMBP-NNs approach are shown in Figures 7 and 8. These plots indicate 

the correctness of the LMBP-NNs scheme for the computer epidemic virus system with the time delay 

effects. Figure 7 shows the comparison values through the achieved and reference results for solving 

the computer virus epidemic system with the delay effects. The matching of the obtained, and reference 

results provides the correctness of LMBP-NNs scheme for the computer epidemic virus model. The 
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AE measures for the LMBP-NNs stochastic approach using three different cases of the model are 

derived in Figure 8. The computer epidemic virus model with the time delay effects is categorized into 

four dynamics, the uninfected S(x) computers, the latently infected L(x) computers, the breaking-out 

B(x) computers, and the antivirus PC’s aptitude R(x). The AE for the uninfected PC’s S(x) is derived 

as 10-5 to 10-6, 10-5 to 10-7, and 10-5 to 10-8 for individual cases of the computer epidemic virus model. 

The AE performances for the latently infected L(x) computers are derived as 10-5 to 10-6, 10-6 to 10-7, 

and 10-6 to 10-8 for cases 1–3. The AE values for the breaking-out PC’s B(x) are performed as 10-5 to 

10-6, 10-6 to 10-7, and 10-5 to 10-7. Similarly, the AE measures for the antivirus PC’s ability R(x) are 

performed as 10-5 to 10-8, 10-6 to 10-8 and 10-5 to 10-7 for individual cases of the computer epidemic 

virus model. These precise and accurate measures indicate the correctness of the LMBP-NNs scheme 

for the computer epidemic virus model with the time delay effects. 

 

Figure 7. Comparison performances for the computer epidemic virus model with the time 

delay effects. 
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Figure 8. AE values for the computer epidemic virus model with the time delay effects. 

5. Conclusions 

This study aims to solve the computer epidemic virus model with the time delay effects using the 

Levenberg-Marquardt backpropagation neural networks. The mathematical form of the model is 

categorized into four dynamics, the uninfected S(x) computers, the latently infected L(x) computers, 

the breaking-out B(x) computers, and the antivirus PC’s aptitude R(x). Finally, a few concluding 

remarks of the current study are presented as follows: 

• A nonlinear computer epidemic virus model with the time delay effects has been numerically 

solved. 

• The computer epidemic virus model's delay factors complicate the dynamic system. To 

numerically formulate the computer epidemic virus model with delay effects, the stochastic 

approach based on Levenberg-Marquardt backpropagation neural networks is one of the 

appropriate options. 

• The stochastic framework for the computer virus epidemic model with the delay effects has been 

provided using data selection with 11%, 13%, and 76% for testing, training, and verification. 

• Fifteen hidden neurons have been used to solve the computer virus epidemic model with the delay 

effects. 

• Stochastic LMBP-NNs procedure's exactness has been performed by overlapping the proposed 

and data-based reference Adam method. 

• The AE values are provided in suitable measures, which are performed as 10-4 to 10-7 for each 

category of the computer virus epidemic system with the delay effects. 
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