Research article

Hilbert series of mixed braid monoid $ MB_{2, 2} $

  • Received: 30 April 2022 Revised: 03 July 2022 Accepted: 12 July 2022 Published: 20 July 2022
  • MSC : 20F36, 20F05, 13D40

  • Hilbert series is a simplest way to calculate the dimension and the degree of an algebraic variety by an explicit polynomial equation. The mixed braid group $ B_{m, n} $ is a subgroup of the Artin braid group $ B_{m+n} $. In this paper we find the ambiguity-free presentation and the Hilbert series of canonical words of mixed braid monoid $ M\!B_{2, 2} $.

    Citation: Zaffar Iqbal, Xiujun Zhang, Mobeen Munir, Ghina Mubashar. Hilbert series of mixed braid monoid $ MB_{2, 2} $[J]. AIMS Mathematics, 2022, 7(9): 17080-17090. doi: 10.3934/math.2022939

    Related Papers:

  • Hilbert series is a simplest way to calculate the dimension and the degree of an algebraic variety by an explicit polynomial equation. The mixed braid group $ B_{m, n} $ is a subgroup of the Artin braid group $ B_{m+n} $. In this paper we find the ambiguity-free presentation and the Hilbert series of canonical words of mixed braid monoid $ M\!B_{2, 2} $.



    加载中


    [1] E. Aljadeff, A. Kanel-Belov, Hilbert series of PI relatively free $G$-graded algebras are rational functions, Bull. London Math. Soc., 44 (2012), 520–532. https://doi.org/10.1112/blms/bdr116 doi: 10.1112/blms/bdr116
    [2] A. Y. Belov, Rationality of Hilbert series with respect to free algebras, Usp. Mat. Nauk, 52 (1997), 153–154.
    [3] E. Artin, Theory of braids, Ann. Math., 48 (1947), 101–126. https://doi.org/10.2307/1969218 doi: 10.2307/1969218
    [4] G. M. Bergman, The diamond lemma for ring theory, Adv. Math., 29 (1978), 178–218. https://doi.org/10.1016/0001-8708(78)90010-5 doi: 10.1016/0001-8708(78)90010-5
    [5] J. S. Birman, Braids, links, and mapping-class groups, Princeton University Press, 1974.
    [6] L. A. Bokut, Y. Fong, W. F. Ke, L. S. Shiao, Gröbner-Shirshov bases for braid semigroup, Adv. Algebra, 2003, 60–72. https://doi.org/10.1142/9789812705808_0005 doi: 10.1142/9789812705808_0005
    [7] B. Berceanu, Z. Iqbal, Universal upper bound for the growth of Artin monoids, Commun. Algebra, 43 (2015), 1967–1982. https://doi.org/10.1080/00927872.2014.881834 doi: 10.1080/00927872.2014.881834
    [8] P. Deligne, Les immeubles des groupes de tresses generalises, Invent. Math., 17 (1972), 273–302. https://doi.org/10.1007/BF01406236 doi: 10.1007/BF01406236
    [9] P. D. Harpe, Topics in geometric group theory, University of Chicago Press, 2000.
    [10] Z. Iqbal, S. Yousaf, Hilbert series of braid monoid $MB_{4}$ in band generators, Turk. J. Math., 38 (2014), 977–984. https://doi.org/10.3906/mat-1401-58 doi: 10.3906/mat-1401-58
    [11] Z. Iqbal, Hilbert series of positive braids, Algebra Colloq., 18 (2011), 1017–1028. https://doi.org/10.1142/S1005386711000897 doi: 10.1142/S1005386711000897
    [12] S. Lambropoulou, Braid structures in knot complements, handle-bodies and 3-manifolds, Knots in Hellas '98, Proceedings of the International Conference on Knot Theory and Its Ramifications, World Scientific Press, 24 (2000), 274–289. https://doi.org/10.1142/9789812792679_0017
    [13] Z. Iqbal, U. Ali, Hilbert series of Artin Monoid $M(I_{2}(p))$, SE. Asian Bull. Math., 37 (2013), 475–480.
    [14] K. Saito, Growth functions associated with Artin monoids of finite type, Proc. Japan Acad., Ser. A, Math. Sci., 84 (2008), 179–183. https://doi.org/10.3792/pjaa.84.179 doi: 10.3792/pjaa.84.179
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1130) PDF downloads(34) Cited by(1)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog