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words of mixed braid monoid MB2,2.

Keywords: braid group; mixed braid monoid; canonical words; complete presentation; Hilbert series
Mathematics Subject Classification: 20F36, 20F05, 13D40

1. Introduction

Hilbert series helps us in expressing the growth of dimension of homogenous components of a
graded algebra. Presently, these ideas are extended to graded algebras, filtered algebras, and graded
or filtered modules over these algebras, monoid in commutative algebra and coherent sheaves over
projective schemes in algebraic geometry. The Hilbert series is a particular case of the Hilbert-Poincaré
series of a graded vector space. It is also of a great significance in computational algebraic geometry
due to the easiest way for computing the dimension and the degree of an algebraic variety defined by
explicit polynomial equations. The Hilbert series is also helpful in providing us the important invariants
of the algebraic varieties. This particular article focuses on the presentation and Hilbert series of the
mixed braid monoid MB2,2.

The classical braid group Bm+1, given by Artin [3], possesses the following presentation:

Bm+1 =

〈
a1, . . . , am

∣∣∣∣∣∣ aia j = a j ai if | i − j | ≥ 2
ai+1 ai ai+1 = ai ai+1 ai if 1 ≤ i ≤ m − 1

〉
.

The braid monoid MBm+1 has the same presentation as the braid group Bm+1. The braid group Bm+1

admits another presentation known as the band presentation given by Birman et al. in [5].
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Definition 1. [7] Let U be a set. A square matrix G = (guv)u,v∈U is called Coxeter matrix over U such
that muu = 1 and muv = mvu ∈ {2, 3, ...,∞} for all u, v ∈ U, u , v.

Definition 2. [7] A Coxeter graph Γ is a labeled graph. It can be defined as
i. A set of vertices of Γ is denoted by U.
ii. Two vertices u, v ∈ U, u , v are connected by an edge if muv ≥ 3. The labeling of edge is muv if

muv ≥ 4.

Definition 3. [7] Let M = (mst)s,t∈S be the Coxeter matrix of the Coxeter graph Γ. Then the group
defined by

W =
〈
s ∈ S | s2 = 1 , (st)mst = 1 for all s, t ∈ S , s , t, mst , ∞

〉
is called Coxeter group (of type Γ).

Definition 4. [12] In mixed braid group Bm,n the first index m denotes trivial strings in the braid group
and the next n strings shows the braiding by itself and with the m strings. The mixed braid group Bm,n

generated by m + n strands is defined by

Bm,n =

〈
α1, . . . , αm,

σ1, . . . , σn−1

∣∣∣∣∣∣
σiσ j = σ j σi if | i − j | ≥ 2
σi+1 σi σi+1 = σi σi+1 σi if 1 ≤ i ≤ n − 1
αiσ j = σ jαi if j ≥ 2 and 1 ≤ i ≤ m
αiσ1αiσ1 = σ1αiσ1αi if 1 ≤ i ≤ m
αl (σ1 αm σ

−1
1 ) = (σ1 αm σ

−1
1 )αl if l < m

〉
.

If we remove the last n strands of Artin group Bm+n then we have only identity braid with m strands.
The collection of all such elements of Artin group Bm+n will be denoted by Bm,n.

Definition 5. [12] The mixed braid monoid MBm,n has the following presentation:

MBm,n =

〈
α1, . . . , αm,

σ1, . . . , σn−1

∣∣∣∣∣∣
σiσ j = σ j σi , | i − j | ≥ 2
σi+1 σi σi+1 = σi σi+1 σi if 1 ≤ i ≤ n − 1
αiσ j = σ jαi , j ≥ 2 and 1 ≤ i ≤ m
αiσ1αiσ1 = σ1αiσ1αi , 1 ≤ i ≤ m

〉
.

In the below diagram of mixed braid monoid MBm,n, the single bonds shows relation of degree 3,
the double bonds shows relation of degree 4 and two generators commute if they are not joined by a
bond (see Figure 1).
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@
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• • • • •α2 • σ1 σ2 ...σ3 σn−1

•

•

αm

α1

···

MBm,n :

Figure 1. Coxeter graph of MBm,m.
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Conveniently αi and σ j are denoted by a single generator ak, 1 ≤ k ≤ i+ j. Note that the mixed braid
monoid MB1,2, which is isomorphic to the Artin monoid of type B2, is presented by

MB1,2 =
〈
a1, a2

∣∣∣a2 a1 a2 a1 = a1 a2 a1 a2

〉
.

The Coxeter diagram for MB1,2 takes the form in Figure 2.

a1
• a2

•

Figure 2. Coxeter graph of MB1,2.

The complete presentation and Hilbert series for MB1,2 are computed in [13]. This motivated us to
compute the Hilbert series of MB2,2.

Definition 6. The classical presentation of MB2,2 is given by

MB2,2 =
〈
a1, a2, a3

∣∣∣a2a1a2a1 = a1a2a1a2, a3a2a3a2 = a2a3a2a3, a3a1 = a1a3

〉
.

Let us denote the relations by

R0 : a3a1 = a1a3,R1 : a2a1a2a1 = a1a2a1a2

and
R2 : a3a2a3a2 = a2a3a2a3.

The Coxeter diagram of MB2,2 is given as Figure 3.

@
@
@

@
@
@

• •a3 a2

•a1

Figure 3. Coxeter graph of MB2,2.

An example of a braid in B2,2 (see Figure 4).

• • • •

• • • •

Figure 4. braid in B2,2.
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In 2003, Bokut [6] gave the non-commutative complete presentation of the braid monoid MBn+1

with the length-lexicographic order induced by a1 < · · · < an. In [10] we computed the Hilbert series
of braid monoid MB4 in band generators. In 1972, P. Deligne [8] proved that the Hilbert series of all
the Artin monoids are rational functions. In [14] Saito computed the growth series of Artin monoids.
In [13] we computed the Hilbert series of the Artin monoids M(I2(p)), where M(I2(4)) is isomorphic to
MB1,2. In [7] we showed that the growth rate of all the Artin monoids is less than 4. In [11] we proved
that the growth rates are exponential and the growth rates for MB3 and MB4 are approximately 1.618
and 2.0868. In this paper we construct a linear system for canonical words and then we find Hilbert
series and the growth rate of the mixed braid monoid MB2,2. It is proved in [1] that the Hilbert series
of the free G-graded F-algebra is a rational function. In [2] the authors proved that the Hilbert series
of relatively free algebras is a rational function.

2. Complete presentation of MB2,2

To get a canonical form of a word in an algebra the diamond lemma by G. Bergman [4] is very
useful. To understand the concepts of ambiguities and canonical words, we start with his terminology.

Definition 7. Let X be a nonempty set and X∗ be the free monoid on X. Let w1 and w2 ∈ X∗, where
w1 = x1x2 · · · xr, w2 = y1y2 · · · yr with xi, yi ∈ X. Then w1 < w2 length-lexicographically if there is a
k ≤ r such that xk < yk and xi = yi for all i < k.

Definition 8. Let µ = ν be a relation in a monoid M and µ1 = sw and µ2 = wt be two words in M.
Then the word of the form µ1 ×w µ2 = swt is said to be an ambiguity.

If µ1t = sµ2 (in the length-lexicographic order) then we say that the ambiguity swt is solvable. A
presentation of M is said to be complete if and only if all the ambiguities are solvable. Corresponding
to the relation µ = ν, the changes αµβ −→ ανβ give a rewriting system. A complete presentation is
equivalent to a confluent rewriting system. In a complete presentation of a monoid a word containing
µ will be called reducible word and a word that does not contain µ will be called an irreducible word
or canonical word. For example a3a2a3 = a2a3a2 is a basic relation in the braid monoid MB4. A word
v = a2

3a2a3 contains α = a3a2a3. Hence v is a reducible word. Then a2
3a2a3 = a2a3a2

2 and a2a3a2
2 is

the canonical form of v. In a presentation of a monoid we fix a total order a1 < a2 < · · · < an on the
generators.

Definition 9. [9] Let G be a finitely generated group and A be a finite set of generators of G. The word
length lA(g) of an element g ∈ G is the smallest integer n for which there exist a1, . . . , an ∈ A∪A−1 such
that g = a1 · · · an.

Definition 10. [9] The Hilbert function of a monoid M is given as H(M, n) = an, i.e., the number
of elements of M of word length n. The Hilbert series of the monoid MBn for arbitrary variable t is

denoted by HM(t) and is defined by HM(t) =
∞∑

n=0
antn.

Definition 11. For a sequence of positive numbers {bl}l≥1 the rate of growth r ∈ R is given by

lim
l

exp
( log bl

l

)
= r.
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Lemma 1. [13] The following equations hold for the canonical words in MI2(4).
(1) P(4)

1 = t
(1−t) + t

(1−t) P
(4)
2

(2) P(4)
2 = t + tP(4)

2 + P(4)
21

(3) P(4)
21 = tP(4)

1 − t2P(4)
21 −

t3
1−t P

(4)
212

(4) P(4)
212 = t2P(4)

2 − t2P(4)
21 .

The solution of the above equations is given in [13] which is as follows:

P(3)
1 =

t
(1 − t)(1 − t − t2 − t3)

, P(3)
2 =

t(1 + t + t2)
1 − t − t2 − t3 , P(3)

21 =
t2(1 + t)

1 − t − t2 − t3 , P(3)
212 =

t3

1 − t − t2 − t3 .

Lemma 2. [13] The Hilbert series of MI2(4) is given by

P(3)
M (t) =

1
(1 − t)(1 − 2t)

.

While solving all the ambiguities we now give a complete presentation of MB2,2.

Theorem 1. The braid monoid MB2,2 has a complete presentation

MB2,2 =
〈
a1, a2, a3

∣∣∣ R0,R1, . . . ,R6

〉
,

where

R(4)
0 : a3a1 = a1a3,

R(4)
1 : a2a1a2a1 = a1a2a1a2,

R(4)
2 : a2an+1

1 a2a1a2 = a1a2a1a2
2an

1,

R(4)
3 : a3a2a3a2 = a2a3a2a3,

R(4)
4 : a3an+1

2 a3a2a3 = a2a3a2a2
3an

2,

R(4)
5 : a3a2an

1a3a2a1a2 = a2a3a2a1a3a2an
1,

R(4)
6 : a3an+1

2 a3a2am
1 a3 = a2a3a2a2

3an
2am

1 ,

where n,m ≥ 0.

Proof. We denote the ambiguity formed by left sides of the relations Ri and R j in MB2,2 by Ri−R j = swt
(say). If in the ambiguity z = swt, L(z) = (sw)t and R(z) = s(wt) are different lexicographically, then
we get a new relation in MB2,2 and if L(z) = (sw)t and R(z) = s(wt) are reduced to an identical word,
then we say that ambiguity is solvable and no relation is formed. Here L(z) denotes the canonical form
of (sw)t and R(z) denotes the conical form of s(wt). The above relations are obtained by solving the
ambiguities involving the relations R(4)

0 , R(4)
1 and R(4)

2 and the new relations. In [13] we computed the
relation (for p = 4) R(4)

3 , which is given by

R(4)
3 : a2an+1

1 a2a1a2 = a1a2a1a2
2an

1.

For an ambiguity R(4)
2 − R(4)

2 = a3a2a3a2a3a2 = w1(say), we have

R(w1) = a3a2a3a2a3a2 = a3a2
2a3a2a3, L(w1) = a3a2a3a2a3a2 = a2a3a2a2

3a2.
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17085

Hence we have a relation Rw1 : a3a2
2a3a2a3 = a2a3a2a2

3a2.Again by solving a new ambiguity Rw1−R(4)
2 =

a3a2
2a3a2a3a2 = w2 we have

R(w2) = a3a2
2a3a2a3a2 = a3a3

2a3a2a3, L(w2) = a3a2
2a3a2a3a2 = a2a3a2a2

3a2
2.

which gives another relation Rw2 : a3a3
2a3a2a3 = a2a3a2a2

3a2
2. By continuing the same process we have

the general relation

R(4)
4 : a3an+1

2 a3a2a3 = a2a3a2a2
3an

2, n ≥ 1.

In the ambiguity R(4)
2 − R(4)

1 = a3a2a3a2a1a2a1 = w3, we have

R(w3) = a3a2a3a2a1a2a1 = a3a2a1a3a2a1a2, L(w3) = a3a2a3a2a1a2a1 = a2a3a2a1a3a2a1.

Hence we have a relation Rw3 : a3a2a1a3a2a1a2 = a2a3a2a1a3a2a1. Again by solving a new ambiguity
Rw3 − R(4)

1 = a3a2a1a3a2a1a2a1 = w4 we have

R(w4) = a3a2a1a3a2a1a2a1 = a3a2a2
1a3a2a1a2,

L(w4) = a3a2a1a3a2a1a2a1 = a2a3a2a1a3a2a2
1,

which gives another relation Rw4 : a3a2a2
1a3a2a1a2 = a2a3a2a1a3a2a2

1. By continuing the same process
we have the general relation

R(4)
5 : a3a2an

1a3a2a1a2 = a2a3a2a1a3a2an
1, n ≥ 1.

In the ambiguity R(4)
4 − R(4)

0 = a3an+1
2 a3a2a3a1 = w5, we have

R(w5) = a3an+1
2 a3a2a3a1 = a3an+1

2 a3a2a1a3, L(w5) = a3an+1
2 a3a2a3a1 = a2a3a2a2

3an
2a1.

Hence we have a relation Rw5 : a3an+1
2 a3a2a1a3 = a2a3a2a2

3an
2a1. Again by solving a new ambiguity

Rw5 − R(4)
0 = a3an+1

2 a3a2a3a1a3a1 = w6 we have

R(w6) = a3an+1
2 a3a2a3a1a3a1 = a3an+1

2 a3a2a2
1a3,

L(w6) = a3an+1
2 a3a2a3a1a3a1 = a2a3a2a2

3an
2a2

1,

which gives another relation Rw6 : a3an+1
2 a3a2a2

1a3 = a2a3a2a2
3an

2a2
1. By continuing the same process we

have the general relation

R(4)
6 : a3an+1

2 a3a2am
1 a3 = a2a3a2a2

3an
2am

1 , n,m ≥ 1.

All other ambiguities all solvable. Hence we have the complete set of relations.
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3. Hilbert series of MB2,2

For our convenience we use these notations for canonical and reducible words in MB2,2. In general
B(4)
∗ denotes the set of reducible words and A(4)

∗ denotes the set of canonical words in MB2,2. Particularly,
B(4)

i denotes the reducible word of R(4)
i in MB2,2 and A(n+m)

j( j−1)...k denotes collection of all canonical words
in MBm,n starting with a ja j−1 . . . ak. These sets are graded by length-lexicographic order, so we can
compute the Hilbert series of these sets. The words Xa3 ×3 a3Y and Xa3a2 ×32 a3a2Y are equivalent to
products Xa3Y and Xa3a2Y , respectively. Let Q(4)

∗ denote the Hilbert series for B(4)
∗ and P(4)

∗ denote the
Hilbert series for A(4)

∗ . Let H(m+n)
M (t) denote the Hilbert series for the set

A(m+n) = e ∪ A(m+n)
1 ∪ A(m+n)

2 ∪ · · · ∪ A(m+n)
k

(for some k ∈ Z) for a monoid M. Then we have

H(m+n)
M (t) = 1 + P(m+n)

1 + P(m+n)
2 + · · · + P(m+n)

k .

Theorem 2. The following relations hold for the Hilbert series of reducible words in MB2,2.

a.Q(4)
1 = t4, b.Q(4)

2 =
t6

1 − t
, c.Q(4)

3 = t4, d.Q(4)
4 =

t6

1 − t
, e.Q(4)

5 =
t7

1 − t
, f .Q(4)

6 =
t7

(1 − t)2 .

Proof. Let α(i, . . . , j) be a word in ai, ai+1, . . . , a j in MB2,2, then Σα(i, . . . , j) be a word in
ai+1, ai+2, . . . , a j+1 in MB2,2. B(4)

∗ denotes the reducible words in MB2,2 corresponding to relation R(4)
∗ .

Q(4)
∗ denotes the Hilbert series of B(4)

∗ . Hilbert series of A(2)
1 = {a1, a2

1, . . .} is P(2)
1 = t + t2 + · · · = t

1−t .

Therefore we have
a. B(4)

1 = {a2a1a2a1}. This implies Q(4)
1 = t4.

b. Since B(4)
2 = {a2an+1

1 a2a1a2} = {a2a1} × A(2)
1 × {a2a1a2}. Hence Q(4)

2 = t6
1−t .

c. Similarly B(4)
3 = {a3a2a3a2} implies Q(4)

3 = t4.
d. The decomposition B(4)

4 = {a3an+1
2 a2a2a3} = {a3a2} × ΣA(2)

1 × {a3a2a3} gives Q(4)
4 = t6

1−t .

e. B(4)
5 = {a3a2am

1 a3a2a1a2} = {a3a2} × A(2)
1 × {a3a2a1a2} gives Q(4)

5 = t7
1−t .

f. B(4)
6 = {a3an+1

2 a2a2am
1 a3} = {a3a2} × ΣA(2)

1 × {a3a2} × A(2)
1 × a3 gives Q(4)

6 = t7
(1−t)2 .

Next we construct a linear system for canonical forms in MB2,2.

Theorem 3. The following relations hold for the Hilbert series of canonical words in MB2,2.

(1) P(4)
1 = P(3)

1 + P(3)
1 P(4)

3 .

(2) P(4)
2 = P(3)

2 + P(3)
2 P(4)

3 .

(3) P(4)
3 = t + tP(4)

3 + P(4)
32 .

(4) P(4)
21 = P(3)

21 + P(3)
21 P(4)

3 .

(5) P(4)
32 = tP(4)

2 − t2P(4)
32 −

t3
1−t P

(4)
323 −

t3
1−t P

(4)
3212 −

t6
(1−t)2 P(4)

3 .

(6) P(4)
212 = P(3)

212 + P(3)
212P(4)

3

(7) P(4)
323 = t2P(4)

3 − t2P(4)
32 .

(8) P(4)
3212 = tP(4)

212.
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Proof. As we have already defined A(4)
∗ denotes the set of canonical words in MB2,2 and B(4)

∗ denotes
the set of reducible words in MB2,2. Now we define the corresponding Hilbert series. Let Q(4)

∗ denotes
the Hilbert series for B(4)

∗ and P(4)
∗ denotes the Hilbert series for A(4)

∗ . Then using the set decomposition
we have

(1) The decomposition of A(4)
1 can be given as A(4)

1 = A(3)
1 ∪ (A(3)

1 × A(4)
3 ). This implies Relation 1.

(2) It follows directly from A(4)
2 = A(3)

2 ∪ (A(3)
2 × A(4)

3 ).
(3) The set A(4)

3 can be written as A(4)
3 = {a3} ∪ (a3 × A(4)

3 ) ∪ A(4)
32 . This results the Relation 2.

(4) It follows from A(4)
21 = A(3)

21 ∪ (A(3)
21 × A(4)

3 ).
(5) The set A(4)

32 is decomposed as

A(4)
32 = {a3} × A(4)

2 \ (B(4)
3 ×32 A(4)

32 ) ∪ (B(4)
323 ×323 A(4)

323) ∪ (B(4)
5 ×3212 A(4)

3212) ∪ (B(4)
6 ×3 A(4)

3 )

which gives the required equation.
(6) The decomposition of A(4)

212 can be written as A(4)
212 = A(3)

212∪ (A(3)
212 ×A(4)

3 ). This implies Relation 6.
(7) It follows from A(4)

323 = {a3a2} × A(4)
3 \ (B(4)

3 ×32 A(4)
32 ).

(8) The decomposition of A(4)
3212 = {a3} × A(4)

212 immediately gives us Relation 8.

Theorem 4. Hilbert Series for the canonical words in MB2,2 is given as

HMB2,2(t) =
1 − 2t + 2t2 − 2t3 + t4 + t6

(1 − t)(1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10)
.

Proof. As we have already computed the Hilbert series of canonical words and reducible words in
Theorem 3 and in Theorem 2, respectively. Now we construct a linear system for canonical words
in MB2,2. For this we put the values of P(3)

1 , P(3)
2 , P(3)

21 and P(3)
212 form Lemma 1 in Theorem 3, we get

following system of equations:
(1) P(4)

1 = t
(1−t)(1−t−t2−t3) + t

(1−t)(1−t−t2−t3) P
(4)
3

(2) P(4)
2 =

t(1+t+t2)
(1−t−t2−t3) +

t(1+t+t2)
(1−t−t2−t3) P

(4)
3

(3) P(4)
3 = t + tP(4)

3 + P(4)
32

(4) P(4)
21 =

t2(1+t)
(1−t−t2−t3) +

t2(1+t)
(1−t−t2−t3) P

(4)
3

(5) P(4)
32 = tP(4)

2 − t2P(4)
32 −

t3
1−t P

(4)
323 −

t3
1−t P

(4)
3212 −

t6
(1−t)2 P(4)

3

(6) P(4)
212 = t3

1−t−t2−t3 + t3
1−t−t2−t3 P(4)

3

(7) P(4)
323 = t2P(4)

3 − t2P(4)
32

(8) P(4)
3212 = tP(4)

212.

Now we use Matrix Inversion Method to solve the system of these equations. Writing above
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equations in matrix form AX = B we have

A =



1 0 −t
(1−t)(1−t−t2−t3) 0 0 0 0 0

0 1 −t(1+t+t2)
(1−t−t2−t3) 0 0 0 0 0

0 0 1 − t 0 −1 0 0 0
0 0 −t2(1+t)

(1−t−t2−t3) 1 0 0 0 0
0 −t t6

(1−t)2 0 1 + t2 0 t3
1−t

t3
1−t

0 0 −t3
1−t−t2−t3 0 0 1 0 0

0 0 −t2 0 t2 0 1 0
0 0 0 0 0 −t 0 1


, X =



P(4)
1

P(4)
2

P(4)
3

P(4)
21

P(4)
32

P(4)
212

P(4)
323

P(4)
3212


, B =



t
(1−t)(1−t−t2−t3)

t(1+t+t2)
(1−t−t2−t3)

t
t2(1+t)

(1−t−t2−t3)
0
t3

(1−t−t2−t3)
0
0


.

By solving the above system of equations, we get

P(4)
1 =

t − 2t2 + 2t3 − 2t4 + t5 + t7

(1 − t)(1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10)
,

P(4)
2 =

t − t2 + t3 − 2t4 + t5 − t6 + 2t7 + t8 + t9

1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10 ,

P(4)
3 =

t − 2t2 + 2t3 − 3t4 + 2t5 − t6 + 2t7 − t10

1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10 ,

P(4)
21 =

t2 − t3 − t6 + t7 + t8 + t9

1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10 ,

P(4)
32 =

t3 − 2t4 + 2t5 − 2t6 + t7 + t9

1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10 ,

P(4)
212 =

t9 + 2t8 − t5 − t3 + t2

1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10 ,

P(4)
323 =

t3 − 3t4 + 3t5 − 3t6 + 3t7 − t8 + 2t9 − 2t10 − t11 − t12

1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10 ,

P(4)
3212 =

t4 − 2t5 + 2t6 − 2t7 + t8 + t10

1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10 .

Hence the Hilbert series of MB2,2 is computed as

HMB2,2(t) = 1 + P(4)
1 + P(4)

2 + P(4)
3

= 1 +
t − 2t2 + 2t3 − 2t4 + t5 + t7

(1 − t)(1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10)

+
t − t2 + t3 − 2t4 + t5 − t6 + 2t7 + t8 + t9

1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10

+
t − 2t2 + 2t3 − 3t4 + 2t5 − t6 + 2t7 − t10

1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10

=
1 − 2t + 2t2 − 2t3 + t4 + t6

(1 − t)(1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10)
= 1 + 3t + 8t2 + 21t3 + 53t4 + 132t5 + 327t6 + 807t7 + 1988t8 + · · · .
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4. Growth rate for MB2,2

In the following remark we find the growth rate of MB2,2. Using Maple we convert the Hilbert series
into partial fraction and by expanding its each term.

Remark 1. The partial fraction of above Hilbert series is calculated as

1 − 2t + 2t2 − 2t3 + t4 + t6

(1 − t)(1 − 4t + 5t2 − 5t3 + 6t4 − 3t5 + 3t6 − 4t7 − t8 − t9 + t10)

=
−0.05443 + 0.01323t

0.56047 − 1.44679t + t2 +
0.00582 + 0.00567t

0.76790 − 0.22627t + t2

+
0.50

−1.00 + t
+

0.07088 + 0.10684t
1.26443 + 1.00955t + t2 +

0.03341 + 0.04181t
2.14793 + 2.17401t + t2 +

0.06238
2.10385 − t

+
0.60519

0.40664 − t
.

As the last term

0.60519
0.40664 − t

= 1.48827(1 + 2.45917t + (2.45917)2t2 + (2.45917)3t3 + · · · )

gives us the approximation of the series and the rest of the terms have negligible effect on it. Hence
a(4)

l ≈ 1.48827(2.45917)l. Thus, in this case the growth function a(4)
l of MB2,2 is also exponential and

growth rate is approximately equal to 2.45917.

5. Conclusions

The mixed braid group Bm,n is the subgroup of the Artinian braid group Bm+n. In this article we
compute the canonical forms(ambiguity free presentation) of the words in the braid monoid and the
corresponding Hilbert series. This work can also be utilized to compute Hilbert series of braid monoid
MBm,n.
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