Research article Special Issues

Solvability for a fractional $ p $-Laplacian equation in a bounded domain

  • Received: 08 March 2022 Revised: 02 May 2022 Accepted: 06 May 2022 Published: 13 May 2022
  • MSC : 35A15, 35R11, 47A10

  • In this paper we use the topological degree and the fountain theorem to study the existence of weak solutions for a fractional $ p $-Laplacian equation in a bounded domain. For the nonlinearity $ f $, we consider two situations: (1) the non-resonance case where $ f $ is $ (p-1) $-asymptotically linear at infinity; (2) the resonance case where $ f $ satisfies the Landesman-Lazer type condition.

    Citation: Zhiwei Lv, Jiafa Xu, Donal O'Regan. Solvability for a fractional $ p $-Laplacian equation in a bounded domain[J]. AIMS Mathematics, 2022, 7(7): 13258-13270. doi: 10.3934/math.2022731

    Related Papers:

  • In this paper we use the topological degree and the fountain theorem to study the existence of weak solutions for a fractional $ p $-Laplacian equation in a bounded domain. For the nonlinearity $ f $, we consider two situations: (1) the non-resonance case where $ f $ is $ (p-1) $-asymptotically linear at infinity; (2) the resonance case where $ f $ satisfies the Landesman-Lazer type condition.



    加载中


    [1] F. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc., 9 (1983), 1–39. http://dx.doi.org/10.1090/S0273-0979-1983-15153-4 doi: 10.1090/S0273-0979-1983-15153-4
    [2] K. Du, R. Peng, N. Sun, The role of protection zone on species spreading governed by a reaction-diffusion model with strong Allee effect, J. Differ. Equations, 266 (2019), 7327–7356. http://dx.doi.org/10.1016/j.jde.2018.11.035 doi: 10.1016/j.jde.2018.11.035
    [3] G. Franzina, G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma., 5 (2014), 373–386.
    [4] B. Ge, Y. Cui, L. Sun, M. Ferrara, The positive solutions to a quasi-linear problem of fractional $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Positivity, 22 (2018), 873–895. http://dx.doi.org/10.1007/s11117-018-0551-z doi: 10.1007/s11117-018-0551-z
    [5] K. Ho, K. Perera, I. Sim, M. Squassina, A note on fractional $p$-Laplacian problems with singular weights, J. Fixed Point Theory Appl., 19 (2017), 157–173. http://dx.doi.org/10.1007/s11784-016-0344-6 doi: 10.1007/s11784-016-0344-6
    [6] B. Hung, H. Toan, On existence of weak solutions for a p-Laplacian system at resonance, RACSAM, 110 (2016), 33–47. http://dx.doi.org/10.1007/s13398-015-0217-7 doi: 10.1007/s13398-015-0217-7
    [7] B. Hung, H. Toan, On fractional $p$-Laplacian equations at resonance, Bull. Malays. Math. Sci. Soc., 43 (2020), 1273–1288. http://dx.doi.org/10.1007/s40840-019-00740-w doi: 10.1007/s40840-019-00740-w
    [8] A. Iannizzotto, S. Liu, K. Perera, M. Squassina, Existence results for fractional $p$-Laplacian problems via Morse theory, Adv. Calc. Var., 9 (2016), 101–125. http://dx.doi.org/10.1515/acv-2014-0024 doi: 10.1515/acv-2014-0024
    [9] A. Iannizzotto, M. Squassina, Weyl-type laws for fractional $p$-eigenvalue problems, Asymptotic Anal., 88 (2014), 233–245. http://dx.doi.org/10.3233/ASY-141223 doi: 10.3233/ASY-141223
    [10] X. Ke, C. Tang, Multiple solutions for semilinear elliptic equations near resonance at higher eigenvalues, Nonlinear Anal.-Theor., 74 (2011), 805–813. http://dx.doi.org/10.1016/j.na.2010.09.031 doi: 10.1016/j.na.2010.09.031
    [11] K. Lan, A variational inequality theory for demicontinuous $S$-contractive maps with applications to semilinear elliptic inequalities, J. Differ. Equations, 246 (2009), 909–928. http://dx.doi.org/10.1016/j.jde.2008.10.007 doi: 10.1016/j.jde.2008.10.007
    [12] D. Liu, On a $p$-Kirchhoff equation via fountain theorem and dual fountain theorem, Nonlinear Anal.-Theor., 72 (2010), 302–308. http://dx.doi.org/10.1016/j.na.2009.06.052 doi: 10.1016/j.na.2009.06.052
    [13] S. Mosconi, K. Perera, M. Squassina, Y. Yang, The Brezis-Nirenberg problem for the fractional $p$-Laplacian, Calc. Var., 55 (2016), 105. http://dx.doi.org/10.1007/s00526-016-1035-2 doi: 10.1007/s00526-016-1035-2
    [14] Z. Ou, Existence of weak solutions for a class of $(p, q)$-Laplacian systems on resonance, Appl. Math. Lett., 50 (2015), 29–36. http://dx.doi.org/10.1016/j.aml.2015.06.004 doi: 10.1016/j.aml.2015.06.004
    [15] R. Pei, Fractional $p$-Laplacian equations with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, Mediterr. J. Math., 15 (2018), 66. http://dx.doi.org/10.1007/s00009-018-1115-y doi: 10.1007/s00009-018-1115-y
    [16] K. Perera, R. Agarwal, D. O'Regan, Morse theoretic aspects of $p$-Laplacian type operators, Providence: American Mathematical Society, 2010. http://dx.doi.org/10.1090/surv/161
    [17] K. Perera, M. Squassina, Y. Yang, A note on the Dancer-Fučík spectra of the fractional $p$-Laplacian and Laplacian operators, Adv. Nonlinear Anal., 4 (2015), 13–23. http://dx.doi.org/10.1515/anona-2014-0038 doi: 10.1515/anona-2014-0038
    [18] K. Perera, M. Squassina, Y. Yang, Bifurcation and multiplicity results for critical fractional $p$-Laplacian problems, Math. Nachr., 289 (2016), 332–342. http://dx.doi.org/10.1002/mana.201400259 doi: 10.1002/mana.201400259
    [19] Y. Pu, X. Wu, C. Tang, Fourth-order Navier boundary value problem with combined nonlinearities, J. Math. Anal. Appl., 398 (2013), 798–813. http://dx.doi.org/10.1016/j.jmaa.2012.09.019 doi: 10.1016/j.jmaa.2012.09.019
    [20] X. Shang, Multiplicity theorems for semipositone $p$-Laplacian problems, Electron. J. Differ. Eq., 2011 (2011), 58.
    [21] I. Skrypnik, Nonlinear elliptic boundary value problems, Leipzig: Teubner, 1986.
    [22] N. Sun, X. Han, Asymptotic behavior of solutions of a reaction-diffusion model with a protection zone and a free boundary, Appl. Math. Lett., 107 (2020), 106470. http://dx.doi.org/10.1016/j.aml.2020.106470 doi: 10.1016/j.aml.2020.106470
    [23] N. Sun, A time-periodic reaction-diffusion-advection equation with a free boundary and signchanging coefficients, Nonlinear Anal.-Real, 51 (2020), 102952. http://dx.doi.org/10.1016/j.nonrwa.2019.06.002 doi: 10.1016/j.nonrwa.2019.06.002
    [24] N. Sun, J. Fang, Propagation dynamics of Fisher-KPP equation with time delay and free boundaries, Calc. Var., 58 (2019), 148. http://dx.doi.org/10.1007/s00526-019-1599-8 doi: 10.1007/s00526-019-1599-8
    [25] N. Sun, B. Lou, M. Zhou, Fisher-KPP equation with free boundaries and time-periodic advections, Calc. Var., 56 (2017), 61. http://dx.doi.org/10.1007/s00526-017-1165-1 doi: 10.1007/s00526-017-1165-1
    [26] N. Sun, C. Lei, Long-time behavior of a reactiondiffusion model with strong allee effect and free boundary: effect of protection zone, J. Dyn. Diff. Equat., in press. http://dx.doi.org/10.1007/s10884-021-10027-z
    [27] M. Xiang, B. Zhang, X. Guo, Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem, Nonlinear Anal.-Theor., 120 (2015), 299–313. http://dx.doi.org/10.1016/j.na.2015.03.015 doi: 10.1016/j.na.2015.03.015
    [28] J. Xu, W. Dong, D. O'Regan, Existence of weak solutions for a fourth-order Navier boundary value problem, Appl. Math. Lett., 37 (2014), 61–66. http://dx.doi.org/10.1016/j.aml.2014.01.003 doi: 10.1016/j.aml.2014.01.003
    [29] W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343–358. http://dx.doi.org/10.1007/s002290170032 doi: 10.1007/s002290170032
    [30] J. Zuo, T. An, M. Li, Superlinear Kirchhoff-type problems of the fractional $p$-Laplacian without the (AR) condition, Bound. Value Probl., 2018 (2018), 180. http://dx.doi.org/10.1186/s13661-018-1100-1 doi: 10.1186/s13661-018-1100-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1391) PDF downloads(100) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog