Mathematics

Research article

Solvability for a fractional p-Laplacian equation in a bounded domain

Zhiwei Lv ${ }^{1}$, Jiafa Xu ${ }^{2, *}$ and Donal O'Regan ${ }^{3}$
${ }^{1}$ School of Sciences and Arts, Suqian University, Suqian 223800, China
${ }^{2}$ School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
${ }^{3}$ School of Mathematical and Statistical Sciences, National University of Ireland, Galway, Ireland

* Correspondence: Email: xujiafa292@sina.com; Tel: 18202339305; Fax: 18202339305.

Abstract

In this paper we use the topological degree and the fountain theorem to study the existence of weak solutions for a fractional p-Laplacian equation in a bounded domain. For the nonlinearity f, we consider two situations: (1) the non-resonance case where f is $(p-1)$-asymptotically linear at infinity; (2) the resonance case where f satisfies the Landesman-Lazer type condition.

Keywords: fractional p-Laplacian equation; weak solution; topological degree; fountain theorem; ($p-1$)-asymptotically linear; Landesman-Lazer type condition
Mathematics Subject Classification: 35A15, 35R11, 47A10

1. Introduction

In this paper we use topological degree and the fountain theorem to study the existence of weak solutions for the fractional p-Laplacian equation

$$
\begin{cases}(-\Delta)_{p}^{s} u=\lambda|u|^{p-2} u+f(x, u)-g(x), & x \in \Omega, \tag{1.1}\\ u=0, & x \in \mathbb{R}^{N} \backslash \Omega,\end{cases}
$$

where $p \geq 2, s \in(0,1), \lambda$ is a parameter, Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 3)$ with smooth boundary $\partial \Omega, f \in C(\Omega \times \mathbb{R}, \mathbb{R})$, and $g: \Omega \rightarrow \mathbb{R}$ is a perturbation function. The operator $(-\Delta)_{p}^{s}$, defined by

$$
(-\Delta)_{p}^{s} u(x):=2 \lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{N} \backslash B_{\varepsilon}(x)} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))}{|x-y|^{N+s p}} d y, \quad x \in \mathbb{R}^{N},
$$

where $B_{\varepsilon}(x)$ is the open ε-ball with center x and radius ε, is known as the fractional p-Laplacian and leads to the study of the problem

$$
\begin{cases}(-\Delta)_{p}^{s} u(x)=h(x, u), & x \in \Omega, \tag{1.2}\\ u=0, & x \in \mathbb{R}^{N} \backslash \Omega .\end{cases}
$$

In the literature, there are many papers on the solvability for the fractional p-Laplacian, see for example $[2,4,5,7,8,13,15,17,18,22-26]$. In [15] the author used the mountain pass theorem and the fractional Moser-Trudinger inequality to study nontrivial solutions for (1.2), where h is superlinear at 0 , and is of subcritical or critical exponential growth at ∞, and does not satisfy the Ambrosetti-Rabinowitz condition. In [8] the authors established existence and multiplicity results for weak solutions to (1.2) using Morse Theory. In [4] the authors used truncation and comparison techniques to study the Problem (1.2) with a nonlinearity of the form $\lambda g(x, u)-f(x, u)$.

It has been observed that the Landesman-Lazer type condition is an important tool to study different types of differential equations, see for example [6,7,10, 14, 20, 28]. In [28] the authors used the condition

$$
\begin{equation*}
\int_{\Omega} f(-\infty) \varphi_{1}(x) d x<\int_{\Omega} g(x) \varphi_{1}(x) d x<\int_{\Omega} f(+\infty) \varphi_{1}(x) d x \tag{1.3}
\end{equation*}
$$

$\left(f(\pm \infty)=\lim _{u \rightarrow \pm \infty} f(u)\right)$ to study weak solutions for the fourth-order Navier boundary value problem

$$
\left\{\begin{array}{l}
\Delta^{2} u(x)+c \Delta u(x)=\lambda_{1} u(x)+f(u(x))-g(x), \quad \text { in } \Omega \\
u=\Delta u=0, \quad \text { on } \partial \Omega
\end{array}\right.
$$

where λ_{1} is the first eigenvalue of the operator $\Delta^{2}+c \Delta$, and φ_{1} is an eigenfunction associated with λ_{1}. In [7] the authors used similar conditions in (1.3) to study weak solutions for (1.1), where $\lambda=\lambda_{1}\left(\lambda_{1}\right.$ is the first eigenvalue of the operator $\left.(-\Delta)_{p}^{s}\right)$.

In [10] the authors used minimax methods to study the semilinear elliptic equation:

$$
\begin{cases}-\Delta u=\lambda u+g(x, u)-h(x), & x \in \Omega \\ u=0, & x \in \partial \Omega\end{cases}
$$

where h, g satisfy the Landesman-Lazer type condition:

$$
\int_{\Omega} h u d x<\int_{\Omega} F(x,-\infty) u^{+} d x-\int_{\Omega} \overline{F(x,+\infty)} u^{-} d x
$$

and

$$
\begin{gathered}
\liminf _{t \rightarrow-\infty} F(x, t)=\underline{F(x,-\infty)}, \limsup _{t \rightarrow+\infty} F(x, t)=\overline{F(x,+\infty)} \text { uniformly for } x \in \Omega, \\
F(x, t)=\left\{\begin{array}{ll}
\frac{2 G(x, t)-g(x, t) t}{t}, & t \neq 0, \\
g(x, 0), & t=0,
\end{array} \quad G(x, t)=\int_{0}^{t} g(x, s) d s\right.
\end{gathered}
$$

Motivated by the above works, in this paper we use topological degree to study weak solutions for (1.1). When $\lambda=0, g \equiv 0$, we use a ($p-1$)-asymptotically linear growth condition at ∞ to obtain a weak solution result for (1.1). When $\lambda=\lambda_{k}$, and f, g satisfy the Landesman-Lazer type condition, we obtain a weak solution result, where λ_{k} are the eigenvalues of the operator $(-\Delta)_{p}^{s}$. Our methods are different from those in $[7,14,20]$, and the results here generalize and improve the corresponding ones in their works and in [28].

2. Preliminaries

Define the Gagliardo seminorm

$$
[u]_{s, p}=\left(\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y\right)^{\frac{1}{p}},
$$

where $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a measurable function, and consider the fractional Sobolev space as follows:

$$
W^{s, p}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{p}\left(\mathbb{R}^{N}\right): u \text { is measurable and }[u]_{s, p}<+\infty\right\}
$$

endowed with the norm

$$
\|u\|_{s, p}=\left(\|u\|_{p}^{p}+[u]_{s, p}^{p}\right)^{\frac{1}{p}}
$$

where $\|\cdot\|_{p}$ is the norm in $L^{p}(\Omega)$. Let $X(\Omega)$ be the closed linear subspace

$$
X(\Omega)=\left\{u \in W^{s, p}\left(\mathbb{R}^{N}\right): u(x)=0 \text { a.e. } x \in \mathbb{R}^{N} \backslash \Omega\right\}
$$

which can be equivalently renormed by setting $\|\cdot\|=[\cdot]_{s, p}($ see $[4,7,8])$.
Lemma 2.1. (see $[4,7,8])$. $(X(\Omega),\|\cdot\|)$ is a uniformly convex Banach space. Moreover, the embedding $X(\Omega)$ into $L^{q}(\Omega)$ is continuous for all $1 \leq q \leq p_{s}^{*}$ and compact for all $1 \leq q<p_{s}^{*}$, where $p_{s}^{*}=\frac{N p}{N-s p}$ if $s p<N$ and $p_{s}^{*}=+\infty$ if $s p \geq N$.

Now, we list some basic results on the topological degree of type $(S)_{+}$.
Definition 2.1. (see [20]). Let X be a reflexive real Banach space and X^{*} its dual. The operator $T: X \rightarrow X^{*}$ is said to satisfy the $(S)_{+}$condition if the assumptions $u_{n} \rightharpoonup u_{0}$ weakly in X and $\lim \sup _{n \rightarrow \infty}\left\langle T\left(u_{n}\right), u_{n}-u_{0}\right\rangle \leqslant 0$ imply $u_{n} \rightarrow u_{0}$ strongly in X.
Definition 2.2. (see [11]). The operator $T: X \rightarrow X^{*}$ is said to be demicontinuous if T maps strongly convergent sequences in X to weakly convergent sequences in X^{*}

Lemma 2.2. (see [20]). Let $T: X \rightarrow X^{*}$ satisfy the $(S)_{+}$condition and let $K: X \rightarrow X^{*}$ be a compact operator. Then the sum $T+K: X \rightarrow X^{*}$ satisfies the $(S)_{+}$condition.

Lemma 2.3. (see [1, 20, 21]). Let $T: X \rightarrow X^{*}$ be a bounded and demicontinuous operator satisfying the $(S)_{+}$condition. Let $\mathcal{D} \subset X$ be an open, bounded and nonempty set with the boundary $\partial \mathcal{D}$ such that $T(u) \neq 0$ for $u \in \partial \mathcal{D}$. Then there exists an integer $\operatorname{deg}(T, \mathcal{D}, 0)$ such that
(C1) $\operatorname{deg}(T, \mathcal{D}, 0) \neq 0$ implies that there exists an element $u_{0} \in \mathcal{D}$ such that $T\left(u_{0}\right)=0$.
(C2) If \mathcal{D} is symmetric with respect to the origin and T satisfies $T(u)=-T(-u)$ for any $u \in \partial \mathcal{D}$, then $\operatorname{deg}(T, \mathcal{D}, 0)$ is an odd number.
(C3) Let T_{λ} be a family of bounded and demicontinuous mappings which satisfy the $(S)_{+}$condition and which depend continuously on a real parameter $\lambda \in[0,1]$, and let $T_{\lambda}(u) \neq 0$ for any $u \in \partial \mathcal{D}$ and $\lambda \in[0,1]$. Then $\operatorname{deg}\left(T_{\lambda}, \mathcal{D}, 0\right)$ is constant with respect to $\lambda \in[0,1]$.

Suppose that there exists a nontrivial weak solution $\varphi(x), x \in \Omega$ of the problem

$$
\begin{cases}(-\Delta)_{p}^{s} u=\lambda|u|^{p-2} u, & x \in \Omega, \tag{2.1}\\ u=0, & x \in \mathbb{R}^{N} \backslash \Omega,\end{cases}
$$

where $\lambda \in \mathbb{R}$ is a parameter. Now, λ is called an eigenvalue of the eigenvalue Problem (2.1), and φ an eigenfunction associated with the eigenvalue λ. Moreover, the set of all eigenvalues of (2.1) in $X(\Omega)$, denoted by $\sigma(s, p)$, has the following properties.

Lemma 2.4. (see [3, 4, 9, 16]). For the problem (2.1), we have
(D1) $\lambda_{1}=\min \sigma(s, p)$ is an isolated point of $\sigma(s, p)$;
(D2) all λ_{1}-eigenfunctions are proportional, and if u is a λ_{1}-eigenfunction, then either $u(x)>0$ a.e. in Ω or $u(x)<0$ a.e. in Ω;
(D3) if $\lambda \in \sigma(s, p) \backslash\left\{\lambda_{1}\right\}$ and u is a λ-eigenfunction, then u changes sign in Ω;
(D4) all eigenfunctions are in $L^{\infty}(\Omega)$;
(D5) $\sigma(s, p)$ is a closed set.
For convenience, we use λ_{k} and $\varphi_{k}(k=1,2, \cdots)$ to stand for the eigenvalues and the corresponding eigenfunctions for the Problem (2.1), respectively. We know that $0<\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{k} \leq \cdots, \lambda_{k} \rightarrow \infty$ as $k \rightarrow+\infty$ (see $[8,17])$, and $\varphi_{1}>0, \varphi_{k}(k=2,3, \cdots)$ are sign-changing functions in Ω. In the following section, we assume

$$
\left\|\varphi_{k}\right\|=1, k=1,2, \cdots .
$$

On the other hand, let $X_{i}=\operatorname{span}\left\{\varphi_{i}\right\}, Y_{k}=\bigoplus_{i=1}^{k} X_{i}, Z_{k}=\overline{\bigoplus_{i=k+1}^{\infty} X}, k=1,2, \ldots$ Then from [30] we have

$$
\begin{equation*}
X(\Omega)=\overline{\bigoplus_{i=1}^{\infty} X_{i}}=Y_{k} \bigoplus Z_{k}, \operatorname{dim} Y_{k}=k \tag{2.2}
\end{equation*}
$$

Definition 2.3. Let X be a real Banach space, $J \in C^{1}(X, \mathbb{R})$ and $c \in \mathbb{R}$. We say that J satisfies the $(P S)_{c}$ condition if any sequence $\left\{u_{m}\right\} \subset X$ such that

$$
J\left(u_{m}\right) \rightarrow c \text { and } J^{\prime}\left(u_{m}\right) \rightarrow 0 \text { as } m \rightarrow \infty
$$

has a convergent subsequence.
Lemma 2.5. (see [12, 27, 29]). Let Y_{k}, Z_{k} be defined in (2.2). Suppose that
(A1) $J \in C^{1}(X(\Omega), \mathbb{R})$ is an even functional.
If for every $k \in \mathbb{N}$, there exist $\rho_{k}>r_{k}>0$ such that
(A2) $a_{k}:=\max _{u \in Y_{k},\|u\|=\rho_{k}} J(u) \leqslant 0$.
(A3) $b_{k}:=\inf _{u \in Z_{k},\|u\|=r_{k}} J(u) \rightarrow \infty$ as $k \rightarrow \infty$.
(A4) J satisfies the $(\mathrm{PS})_{\mathrm{c}}$ condition for all $c>0$.
Then J has an unbounded sequence of critical values.

3. Main results

Define the nonlinear operator $A: X(\Omega) \rightarrow X(\Omega)^{*}$ as follows:

$$
\langle A(u), v\rangle=\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))(v(x)-v(y))}{|x-y|^{N+s p}} d x d y, \forall u, v \in X(\Omega) .
$$

Clearly, A is odd, $(p-1)$-homogeneous, and for all $u \in X(\Omega)$ we have

$$
\langle A(u), u\rangle=\|u\|^{p}, \quad\|A(u)\|_{*} \leq\|u\|^{p-1} .
$$

Lemma 3.1. (see [4]). The operator A satisfies the $(S)_{+}$condition.
We first study the problem

$$
\begin{cases}(-\Delta)_{p}^{s} u=f(x, u), & x \in \Omega, \tag{3.1}\\ u=0, & x \in \mathbb{R}^{N} \backslash \Omega,\end{cases}
$$

where p, s, N, Ω are as in (1.1), and f satisfies the ($p-1$)-asymptotically linear condition:
(H1) $\lim _{|t| \rightarrow \infty} \frac{f(x, t)}{|t|^{p-2} t}=b$ uniformly for $x \in \Omega$ with $b \neq \lambda_{k}$.
Theorem 3.1. Let (H1) hold. Then (3.1) has at least one weak solution.
Proof. A weak solution of Problem (1.1) is a function $u \in X(\Omega)$ such that

$$
\langle A(u), v\rangle=\int_{\Omega} f(x, u) v d x, \forall v \in X(\Omega) .
$$

From (H1) there exist $\varepsilon_{0}>0$ and $M_{0}>0$ such that

$$
|f(x, t)| \leq\left(|b|+\varepsilon_{0}\right)|t|^{p-1}, \text { for } x \in \Omega,|t|>M_{0} .
$$

When $x \in \Omega,|t| \leq M_{0}, f(x, t)$ is bounded. Hence, there exists $c_{0}>0$ such that

$$
\begin{equation*}
|f(x, t)| \leq c_{0}+\left(|b|+\varepsilon_{0}\right)|t|^{p-1}, x \in \Omega, t \in \mathbb{R} . \tag{3.2}
\end{equation*}
$$

Let $B, S: X(\Omega) \rightarrow X(\Omega)^{*}$ be as follows:

$$
\langle B(u), v\rangle=\int_{\Omega}|u|^{p-2} u v d x,\langle S(u), v\rangle=\int_{\Omega} f(x, u) v d x, \forall v \in X(\Omega) .
$$

Note that $p<p_{s}^{*}, f$ satisfies the subcritical Condition (3.2), and then $B, S: X(\Omega) \rightarrow X(\Omega)^{*}$ are compact operators.

From the definitions of A, S, we know that if there is an $u_{0} \in X(\Omega)$ such that $\left\langle A\left(u_{0}\right), v\right\rangle=$ $\left\langle S\left(u_{0}\right), v\right\rangle, \forall v \in X(\Omega)$, then u_{0} is a weak solution for (1.1). Now, we define a homotopy

$$
\begin{equation*}
T_{\tau}(u)=A(u)-(1-\tau) S(u)-\tau b B(u), \quad \text { for } \tau \in[0,1], u \in X(\Omega), \tag{3.3}
\end{equation*}
$$

where b is in (H1). From Lemma 3.1 and Lemma 2.2 we have that T_{τ} satisfies the $(S)_{+}$condition. Now we prove that there exists $R>0$ such that this homotopy (3.3) is admissible within the ball $Q(0, R) \subset X(\Omega)$. On the contrary, for any $n \in \mathbb{N}$, there exist $\tau_{n} \in[0,1]$ and $u_{n} \in X(\Omega),\left\|u_{n}\right\| \geqslant n$ such that $T_{\tau_{n}}\left(u_{n}\right)=0$, i.e., $A\left(u_{n}\right)-\left(1-\tau_{n}\right) S\left(u_{n}\right)-\tau_{n} b B\left(u_{n}\right)=0$, and this can be rewritten in the form

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)(v(x)-v(y))}{|x-y|^{N+s p}} d x d y-\left(1-\tau_{n}\right) \int_{\Omega} f\left(x, u_{n}\right) v d x-\tau_{n} b \int_{\Omega}\left|u_{n}\right|^{p-2} u_{n} v d x=0 . \tag{3.4}
\end{equation*}
$$

Let $\omega_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. Then, dividing (3.4) by $\left\|u_{n}\right\|^{p-1}$, we have

$$
\begin{align*}
\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} & \frac{\left|\omega_{n}(x)-\omega_{n}(y)\right|^{p-2}\left(\omega_{n}(x)-\omega_{n}(y)\right)(v(x)-v(y))}{|x-y|^{N+s p}} d x d y \tag{3.5}\\
& \quad-\left(1-\tau_{n}\right) \int_{\Omega} \frac{f\left(x, u^{n}\right)}{\left|u_{n}\right|^{p-2} u_{n}}\left|\omega_{n}\right|^{p-2} \omega_{n} v d x-\tau_{n} b \int_{\Omega}\left|\omega_{n}\right|^{p-2} \omega_{n} v d x=0 .
\end{align*}
$$

Note the definitions of ω_{n}, τ_{n}, and we may assume that $\omega_{n} \rightharpoonup \omega$ weakly in $X(\Omega), \omega_{n} \rightarrow \omega$ strongly in $L^{p}(\Omega)$, and $\tau_{n} \rightarrow \tau \in[0,1]$. Moreover, we also have a basic result from Lemma 2.2 of [19]:

$$
\begin{equation*}
\int_{\Omega} \frac{f\left(x, u_{n}\right)}{\left|u_{n}\right|^{p-2} u_{n}}\left|\omega_{n}\right|^{p-2} \omega_{n} v d x \rightarrow \int_{\Omega} b|\omega|^{p-2} \omega v d x . \tag{3.6}
\end{equation*}
$$

Therefore, let $n \rightarrow \infty$ in (3.5) and we have

$$
\langle A(\omega), v\rangle-(1-\tau) \int_{\Omega} b|\omega|^{p-2} \omega v d x-\tau b \int_{\Omega}|\omega|^{p-2} \omega v d x=0
$$

i.e., $\langle A(\omega), v\rangle=b\langle B(\omega), v\rangle, \forall v \in X(\Omega)$, and this contradicts $b \neq \lambda_{k}$. Thus our claim is true, i.e., the homotopy T_{τ} is admissible within the ball $Q(0, R)$. Hence, from Lemma 2.3(C3) we have

$$
\begin{equation*}
\operatorname{deg}(A-S, Q(0, R), 0)=\operatorname{deg}(A-b B, Q(0, R), 0) \tag{3.7}
\end{equation*}
$$

Note that the right-hand side of (3.7) is an odd number by Lemma 2.3(C2) and $b \neq \lambda_{k}$. Hence $\operatorname{deg}(A-S, Q(0, R), 0) \neq 0$, and Lemma 2.3(C1) implies that (1.1) has a weak solution. This completes the proof.

In Section 2 we know that for any fixed $k \in \mathbb{N}$, $\operatorname{dim} Y_{k}=k<\infty$, and all norms in finite dimensional spaces are equivalent, and thus for all $u \in Y_{k}$ there exists a positive constant μ_{1} such that

$$
\begin{equation*}
\mu_{1}\|u\|^{p} \leq\|u\|_{p}^{p}, u \in Y_{k} . \tag{3.8}
\end{equation*}
$$

Condition (H1) is only needed to guarantee that (1.1) has at least one weak solution (see Theorem 3.1). To obtain that (1.1) has infinitely many weak solutions, we need an extra assumption, namely
(H2) $f(x, t)+f(x,-t)=0$ for $x \in \Omega, t \in \mathbb{R}$.
Theorem 3.2. Let (H1) and (H2) hold with $b>\mu_{1}^{-1}$. Then (3.1) has infinitely many weak solutions.
Proof. We define the energy functional J as follows:

$$
\begin{equation*}
J(u)=\frac{1}{p}\|u\|^{p}-\int_{\Omega} F(x, u) d x, \tag{3.9}
\end{equation*}
$$

where $F(x, u)=\int_{0}^{u} f(x, t) d t$. Note that (3.2) implies that J is well defined on $X(\Omega)$, and of class C^{1}. We first prove that J satisfies the (PS) $)_{\mathrm{c}}$ condition for all $c>0$. Assume that $\left\{u_{n}\right\} \subset X(\Omega)$ is a (PS) ${ }_{\mathrm{c}}$ sequence, i.e.,

$$
\begin{equation*}
J\left(u_{n}\right) \rightarrow c \text { and } J^{\prime}\left(u_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.10}
\end{equation*}
$$

Now, we claim that $\left\{u_{n}\right\}$ is bounded in $X(\Omega)$. If not, we may assume that there is a subsequence of $\left\{u_{n}\right\}$, still denoted by $\left\{u_{n}\right\}$, such that $\left\|u_{n}\right\| \rightarrow+\infty$ as $n \rightarrow \infty$. Let $\omega_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. Then $\left\{\omega_{n}\right\}$ is bounded, $\left\|\omega_{n}\right\|=1$, and there exists $\omega \in X(\Omega)$ such that

$$
\begin{equation*}
\omega_{n} \rightharpoonup \omega \text { weakly in } X(\Omega), \omega_{n} \rightarrow \omega \text { strongly in } L^{q}(\Omega) \text { with } q \in\left[1, p_{s}^{*}\right), \omega_{n}(x) \rightarrow \omega(x) \text {, a.e. } x \in \Omega . \tag{3.11}
\end{equation*}
$$

If $\omega(x) \equiv 0, x \in \Omega$, note that $J\left(u_{n}\right) \rightarrow c,\left\|u_{n}\right\| \rightarrow+\infty$ as $n \rightarrow \infty$, then dividing (3.9) by $\left\|u_{n}\right\|^{p}$ we have

$$
\begin{equation*}
\frac{1}{p}-\int_{\Omega} \frac{F\left(x, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d x=\frac{J\left(u_{n}\right)}{\left\|u_{n}\right\|^{p}} \rightarrow 0, \text { as } n \rightarrow \infty . \tag{3.12}
\end{equation*}
$$

From (3.2) we have

$$
|F(x, u)|=\left|\int_{0}^{1} f(x, u s) u d s\right| \leq \int_{0}^{1}\left(c_{0}+\left(|b|+\varepsilon_{0}\right)|u s|^{p-1}\right)|u| d s \leq c_{0}|u|+\left(|b|+\varepsilon_{0}\right)|u|^{p}, \forall x \in \Omega, u \in \mathbb{R}
$$

Together with this and the Lebesgue dominated convergence theorem we find

$$
\left|\int_{\Omega} \frac{F\left(x, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d x\right| \leq \int_{\Omega} \frac{\left|F\left(x, u_{n}\right)\right|}{\left\|u_{n}\right\|^{p}} d x \leq \int_{\Omega} \frac{c_{0}\left|u_{n}\right|+\left(|b|+\varepsilon_{0}\right)\left|u_{n}\right|^{p}}{\left|u_{n}\right|^{p}}\left|\omega_{n}\right|^{p} d x \rightarrow 0, \text { as } n \rightarrow \infty .
$$

This is a contradiction with (3.12), and hence $\omega(x) \not \equiv 0, x \in \Omega$.
Note that J^{\prime} is

$$
\left\langle J^{\prime}(u), v\right\rangle=\langle A(u), v\rangle-\int_{\Omega} f(x, u) v d x, \forall v \in X(\Omega)
$$

Then, dividing this equation by $\left\|u_{n}\right\|^{p-1}$ we have

$$
\frac{\left\langle J^{\prime}\left(u_{n}\right), v\right\rangle}{\left\|u_{n}\right\|^{p-1}}=\frac{\left\langle A\left(u_{n}\right), v\right\rangle}{\left\|u_{n}\right\|^{p-1}}-\int_{\Omega} \frac{f\left(x, u_{n}\right)}{\left\|u_{n}\right\|^{p-1}} v d x
$$

and from (3.10) we obtain

$$
\left\langle A\left(\omega_{n}\right), v\right\rangle=\int_{\Omega} \frac{f\left(x, u_{n}\right)}{\left|u_{n}\right|^{p-2} u_{n}}\left|\omega_{n}\right|^{p-2} \omega_{n} v d x+o(1) .
$$

Let $n \rightarrow \infty$. Then from (3.6) and (3.11) we have

$$
\langle A(\omega), v\rangle=b \int_{\Omega}|\omega|^{p-2} \omega v d x .
$$

This is a contradiction with $b \neq \lambda_{k}$.
As a result, $\left\{u_{n}\right\}$ is a bounded sequence. Thus, there exist a subsequence(still denoted by $\left\{u_{n}\right\}$) and $u \in X(\Omega)$ such that

$$
\begin{equation*}
u_{n} \rightharpoonup u \text { weakly in } X(\Omega), u_{n} \rightarrow u \text { strongly in } L^{q}(\Omega) \text { with } q \in\left[1, p_{s}^{*}\right), u_{n}(x) \rightarrow u(x), \text { a.e. } x \in \Omega . \tag{3.13}
\end{equation*}
$$

Consequently, from (3.2) we have

$$
\begin{aligned}
\left|\int_{\Omega}\left(f\left(x, u_{n}\right)-f(x, u)\right)\left(u_{n}-u\right) d x\right| & \leq \int_{\Omega}\left|2 c_{0}+\left(|b|+\varepsilon_{0}\right)\left(\left|u_{n}\right|^{p-1}+|u|^{p-1}\right) \| u_{n}-u\right| d x \\
& \leq 2 c_{0}[\operatorname{meas}(\Omega)]^{\frac{p-1}{p}}\left\|u_{n}-u\right\|_{p}+\left(|b|+\varepsilon_{0}\right)\left(\left\|u_{n}\right\|_{p}^{p-1}+\|u\|_{p}^{p-1}\right)\left\|u_{n}-u\right\|_{p} \\
& \rightarrow 0
\end{aligned}
$$

Obviously, $\left\langle J^{\prime}\left(u_{n}\right)-J^{\prime}(u), u_{n}-u\right\rangle=o(1)$. Hence, we have

$$
\begin{equation*}
\left\langle A\left(u_{n}\right)-A(u), u_{n}-u\right\rangle=0, \text { as } n \rightarrow \infty . \tag{3.14}
\end{equation*}
$$

Using the Hölder inequality, we get

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)(u(x)-u(y))}{|x-y|^{N+s p}} d x d y \\
& =\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)(u(x)-u(y))}{\left(|x-y|^{N+s p}\right)^{\frac{p-1}{p}}\left(|x-y|^{N+s p}\right)^{\frac{1}{p}}} d x d y \\
& \leq\left(\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}}\left|\frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)}{\left(|x-y|^{N+s p}\right)^{\frac{p-1}{p}}}\right|^{\frac{p}{p-1}} d x d y\right)^{\frac{p-1}{p}}\left(\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}}\left|\frac{u(x)-u(y)}{\left(|x-y|^{N+s p}\right)^{\frac{1}{p}}}\right|^{p} d x d y\right)^{\frac{1}{p}} \\
& =\left\|u_{n}\right\|^{p-1}\|u\| .
\end{aligned}
$$

Combining this with (3.14) we have

$$
\begin{aligned}
o(1)= & \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{p}}{|x-y|^{N+s p}} d x d y-\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{\left|u_{n}(x)-u_{n}(y)\right|^{p-2}\left(u_{n}(x)-u_{n}(y)\right)(u(x)-u(y))}{|x-y|^{N+s p}} d x d y \\
& -\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p-2}(u(x)-u(y))\left(u_{n}(x)-u_{n}(y)\right)}{|x-y|^{N+s p}} d x d y+\int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+s p}} d x d y \\
& \geq\left\|u_{n}\right\|^{p}-\|u\|\|\mid\| u_{n}\left\|^{p-1}-\right\| u_{n}\| \| u\left\|^{p-1}+\right\| u \|^{p} \\
& =\left(\left\|u_{n}\right\|-\|u\|\right)\left(\left\|u_{n}\right\|^{p-1}-\|u\|^{p-1}\right) \\
& \geq 0 .
\end{aligned}
$$

This implies that $\left\|u_{n}\right\| \rightarrow\|u\|$, i.e., $u_{n} \rightarrow u$ strongly in $X(\Omega)$. Therefore, J satisfies the (PS) ${ }_{\text {c }}$ condition for all $c>0$, as required.

From (H1) we have $\lim _{|t| \rightarrow \infty} \frac{f(x, t)}{|t|^{-2} t}>\mu_{1}^{-1}$ uniformly for $x \in \Omega$, and there exits $\varepsilon_{1}>0, c_{1}>0$ such that

$$
f(x, t) \geq\left(\mu_{1}^{-1}+\varepsilon_{1}\right)|t|^{p-2} t-c_{1}, \text { for } t \in \mathbb{R}, x \in \Omega .
$$

This implies that

$$
F(x, t) \geq \frac{\mu_{1}^{-1}+\varepsilon_{1}}{p}|t|^{p}-c_{1}|t|, \text { for } t \in \mathbb{R}, x \in \Omega
$$

For any $u \in Y_{k}$, and from (3.8) we obtain

$$
J(u) \leq \frac{1}{p}\|u\|^{p}-\int_{\Omega}\left[\frac{\mu_{1}^{-1}+\varepsilon_{1}}{p}|u|^{p}-c_{1}|u|\right] d x \leq \frac{1}{p}\|u\|^{p}\left(1-\left(\mu_{1}^{-1}+\varepsilon_{1}\right) \mu_{1}\right)+c_{1}\|u\|_{1} .
$$

Note that $1-\left(\mu_{1}^{-1}+\varepsilon_{1}\right) \mu_{1}<0$ and $p \geq 2$, there exist positive constants d_{k} such that

$$
\begin{equation*}
J(u) \leq 0, \text { for } u \in Y_{k},\|u\| \geq d_{k} . \tag{3.15}
\end{equation*}
$$

Note that $\lambda_{k} \rightarrow+\infty$ as $k \rightarrow \infty$, and thus there exists $k \in \mathbb{N}$ such that $b<\lambda_{k+1}$. Then using the limit $\lim _{|t| \rightarrow \infty} \frac{f(x, t)}{|t|^{p-2} t}<\lambda_{k+1}$ uniformly for $x \in \Omega$, and there exits $\varepsilon_{2}>0, c_{2}>0$ such that

$$
f(x, t) \leq\left(\lambda_{k+1}-\varepsilon_{2}\right)|t|^{p-2} t+c_{2}, \text { for } t \in \mathbb{R}, x \in \Omega .
$$

This implies that

$$
F(x, t) \leq\left.\frac{\lambda_{k+1}-\varepsilon_{2}}{p}|t|\right|^{p}+c_{2}|t|, \text { for } t \in \mathbb{R}, x \in \Omega .
$$

For all $u \in Z_{k}$, let $\beta_{k}=\sup _{u \in Z_{k}\| \| u \|=1}\|u\|_{p}$. From Lemma 2.1 and Lemma 4.1 in [30], $\beta_{k} \rightarrow 0$ as $k \rightarrow \infty$. Note that from (2.2) and [8, Lemma 4.5] we have

$$
\|u\|^{p} \geq \lambda_{k+1}\|u\|_{p}^{p}, \text { for } u \in Z_{k} .
$$

Therefore, we obtain

$$
J(u) \geq \frac{1}{p}\|u\|^{p}-\int_{\Omega}\left[\frac{\lambda_{k+1}-\varepsilon_{2}}{p}|u|^{p}+c_{2}|u|\right] d x \geq \frac{1}{p}\|u\|^{p}\left(1-\frac{\lambda_{k+1}-\varepsilon_{2}}{\lambda_{k+1}}\right)-c_{2}[\operatorname{meas}(\Omega)]^{\frac{p-1}{p}} \beta_{k}\|u\| .
$$

Let $r_{k}=\beta_{k}^{-1}$. Then $r_{k} \rightarrow+\infty$ as $k \rightarrow \infty$, and

$$
J(u) \geq \frac{1}{p}\left(1-\frac{\lambda_{k+1}-\varepsilon_{2}}{\lambda_{k+1}}\right) r_{k}^{p}-c_{2}[\operatorname{meas}(\Omega)]^{\frac{p-1}{p}} \rightarrow+\infty, \text { as } k \rightarrow \infty .
$$

Hence,

$$
b_{k}=\inf _{u \in \mathcal{Z}_{k},\|u\|=r_{k}} J(u) \rightarrow+\infty \text { as } k \rightarrow \infty,
$$

and let $\rho_{k}=\max \left\{d_{k}, r_{k}+1\right\}$ from (3.15) we have

$$
a_{k}=\max _{u \in Y_{k},\| \| \|=\rho_{k}} J(u) \leq 0 .
$$

Note that (H2) implies that J is an even functional, and we obtain all the conditions in Lemma 2.5 are satisfied, J has an unbounded sequence of critical values, i.e., (3.1) has infinitely many weak solutions. This completes the proof.

Next we consider the following problem

$$
\begin{cases}(-\Delta)_{p}^{s} u=\lambda_{k}|u|^{p-2} u+f(u)-g(x), & x \in \Omega, \tag{3.16}\\ u=0, & x \in \mathbb{R}^{N} \backslash \Omega,\end{cases}
$$

where p, s, N, Ω, g are as in (1.1), and $f \in C(\mathbb{R}, \mathbb{R})$ satisfies the condition:
(H3) f is bounded and has finite limits $f(+\infty), f(-\infty)$ such that

$$
f(+\infty)=\lim _{u \rightarrow+\infty} f(u), f(-\infty)=\lim _{u \rightarrow-\infty} f(u) .
$$

Theorem 3.3. Suppose that (H3) holds. Let $g \in L^{p^{\prime}}(\Omega)\left(p^{\prime}=\frac{p}{p-1}\right)$ with $g(x) \not \equiv 0$ in Ω be a given function, and satisfies either

$$
\begin{equation*}
\int_{\Omega} f(+\infty) \varphi_{k}^{+}(x) d x-\int_{\Omega} f(-\infty) \varphi_{k}^{-}(x) d x<\int_{\Omega} g(x) \varphi_{k}(x) d x<\int_{\Omega} f(-\infty) \varphi_{k}^{+}(x) d x-\int_{\Omega} f(+\infty) \varphi_{k}^{-}(x) d x \tag{3.17}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{\Omega} f(-\infty) \varphi_{k}^{+}(x) d x-\int_{\Omega} f(+\infty) \varphi_{k}^{-}(x) d x<\int_{\Omega} g(x) \varphi_{k}(x) d x<\int_{\Omega} f(+\infty) \varphi_{k}^{+}(x) d x-\int_{\Omega} f(-\infty) \varphi_{k}^{-}(x) d x, \tag{3.18}
\end{equation*}
$$

where φ_{k}^{+}and φ_{k}^{-}respectively denote the positive and negative parts of φ_{k} for $k=1,2, \ldots$ Then (3.16) has at least one weak solution.

Proof. Let $\left\langle g^{*}, v\right\rangle=\int_{\Omega} g(x) v d x, \forall v \in X(\Omega)$. Note that $g \in L^{p^{\prime}}(\Omega)$ with $p^{\prime}=\frac{p}{p-1}$, and we have g^{*} is a compact operator. Note that f is bounded in \mathbb{R}, we obtain $\lim _{|t| \rightarrow \infty} \frac{f(t)}{|t|^{-2} t}=0$. This implies that (3.2) holds, and the operator $\langle S(u), v\rangle=\int_{\Omega} f(u) v d x, \forall v \in X(\Omega)$ is also compact on $X(\Omega)$. Choosing $\delta_{k} \in$ $\left(0, \lambda_{k+1}-\lambda_{k}\right)$, and we can define a homotopy as follows:

$$
T_{\tau}(u)=A(u)-\lambda_{k} B(u)-(1-\tau) \delta_{k} B(u)-\tau S(u)+\tau g^{*}, u \in X(\Omega), \tau \in[0,1] .
$$

We now prove that there exists $R>0$ such that this homotopy is admissible within the ball $Q(0, R) \subset$ $X(\Omega)$. We argue by contradiction. For any $n \in \mathbb{N}$, assume there exist $\tau_{n} \in[0,1]$ and $u_{n} \in X(\Omega),\left\|u_{n}\right\| \geq n$ such that $T_{\tau_{n}}\left(u_{n}\right)=0$, and this can be expressed by

$$
\begin{equation*}
\left\langle A\left(u_{n}\right), v\right\rangle-\lambda_{k}\left\langle B\left(u_{n}\right), v\right\rangle-\left(1-\tau_{n}\right) \delta_{k}\left\langle B\left(u_{n}\right), v\right\rangle-\tau_{n}\left\langle S\left(u_{n}\right), v\right\rangle+\tau_{n}\left\langle g^{*}, v\right\rangle=0, \forall v \in X(\Omega) . \tag{3.19}
\end{equation*}
$$

Let $\omega_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. Then, dividing (3.19) by $\left\|u_{n}\right\|^{p-1}$, we obtain

$$
\begin{equation*}
\left\langle A\left(\omega_{n}\right), v\right\rangle-\lambda_{k}\left\langle B\left(\omega_{n}\right), v\right\rangle-\left(1-\tau_{n}\right) \delta_{k}\left\langle B\left(\omega_{n}\right), v\right\rangle-\tau_{n} \frac{\left\langle S\left(u_{n}\right), v\right\rangle}{\left\|u_{n}\right\|^{p-1}}+\tau_{n} \frac{\left\langle g^{*}, v\right\rangle}{\left\|u_{n}\right\|^{p-1}}=0, \forall v \in X(\Omega) . \tag{3.20}
\end{equation*}
$$

Using the conditions for f, g we have

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\langle g^{*}, v\right\rangle\right|}{\left\|u_{n}\right\|^{p-1}}=\lim _{n \rightarrow \infty} \frac{1}{\left\|u_{n}\right\|^{p-1}}\left|\int_{\Omega} g(x) v d x\right| \leq \lim _{n \rightarrow \infty} \frac{\|g\|_{p^{\prime}}\|v\|_{p}}{\left\|u_{n}\right\|^{p-1}}=0
$$

and note that f is bounded on \mathbb{R}, so we have

$$
\lim _{n \rightarrow \infty} \frac{\left|\left\langle S\left(u_{n}\right), v\right\rangle\right|}{\left\|u_{n}\right\|^{p-1}}=\lim _{n \rightarrow \infty} \frac{1}{\left\|u_{n}\right\|^{p-1}}\left|\int_{\Omega} f\left(u_{n}\right) v d x\right| \leq \lim _{n \rightarrow \infty} \frac{1}{\left\|u_{n}\right\|^{p-1}} \int_{\Omega} M|v| d x=0
$$

where M is a positive constant. Let $\omega_{n} \rightharpoonup \omega$ weakly in $X(\Omega), \omega_{n} \rightarrow \omega$ strongly in $L^{p}(\Omega)$, and $\tau_{n} \rightarrow \tau \in[0,1]$. Then from (3.20) we have

$$
\langle A(\omega), v\rangle-\lambda_{k}\langle B(\omega), v\rangle-(1-\tau) \delta_{k}\langle B(\omega), v\rangle=0, \forall v \in X(\Omega) .
$$

Note that $\lambda_{k}+(1-\tau) \delta_{k}, \tau \in[0,1)$ is not eigenvalues for (2.1), so we only consider $\tau=1$. Hence, we have

$$
\langle A(\omega), v\rangle-\lambda_{k}\langle B(\omega), v\rangle=0, \forall v \in X(\Omega) .
$$

As a result, $\omega= \pm \varphi_{k}$, and $u_{n}=\omega_{n}\left\|u_{n}\right\| \rightarrow \pm \varphi_{k}\left\|u_{n}\right\|$. Thus, we have

$$
\left\langle A\left(u_{n}\right), v\right\rangle-\lambda_{k}\left\langle B\left(u_{n}\right), v\right\rangle \rightarrow 0, \forall v \in X(\Omega) .
$$

In what follows, we consider two cases:
Case 3.1. $\omega=\varphi_{k}$, i.e., $\omega_{n} \rightarrow \varphi_{k}$. Hence, $u_{n} \rightarrow+\infty$ in $\Omega \cap\left\{x: \varphi_{k}(x) \geq 0\right\}, u_{n} \rightarrow-\infty$ in $\Omega \cap\{x:$ $\left.\varphi_{k}(x) \leq 0\right\}$. Let $n \rightarrow \infty$ and $v=\varphi_{k}$, and from (3.19) we have

$$
\begin{aligned}
\left\langle g^{*}, \varphi_{k}\right\rangle & =\int_{\Omega} g(x) \varphi_{k}(x) d x=\lim _{n \rightarrow \infty}\left\langle S\left(u_{n}\right), \varphi_{k}\right\rangle=\lim _{n \rightarrow \infty} \int_{\Omega} f\left(u_{n}\right) \varphi_{k}(x) d x \\
& =\lim _{n \rightarrow \infty} \int_{\Omega} f\left(u_{n}\right)\left(\varphi_{k}^{+}(x)-\varphi_{k}^{-}(x)\right) d x=\int_{\Omega}\left[f(+\infty) \varphi_{k}^{+}(x)-f(-\infty) \varphi_{k}^{-}(x)\right] d x .
\end{aligned}
$$

Case 3.2. $\omega=-\varphi_{k}$, i.e., $\omega_{n} \rightarrow-\varphi_{k}$. Hence, $u_{n} \rightarrow-\infty$ in $\Omega \cap\left\{x: \varphi_{k}(x) \geq 0\right\}$, $u_{n} \rightarrow+\infty$ in $\Omega \cap\left\{x: \varphi_{k}(x) \leq 0\right\}$. Let $n \rightarrow \infty$ and $v=\varphi_{k}$, and from (3.19) we have

$$
\begin{aligned}
\left\langle g^{*}, \varphi_{k}\right\rangle & =\int_{\Omega} g(x) \varphi_{k}(x) d x=\lim _{n \rightarrow \infty}\left\langle S\left(u_{n}\right), \varphi_{k}\right\rangle=\lim _{n \rightarrow \infty} \int_{\Omega} f\left(u_{n}\right) \varphi_{k}(x) d x \\
& =\lim _{n \rightarrow \infty} \int_{\Omega} f\left(u_{n}\right)\left(\varphi_{k}^{+}(x)-\varphi_{k}^{-}(x)\right) d x=\int_{\Omega}\left[f(-\infty) \varphi_{k}^{+}(x)-f(+\infty) \varphi_{k}^{-}(x)\right] d x .
\end{aligned}
$$

The above two cases contradict (3.17) or (3.18). This proves that the homotopy $T_{\tau}(u)$ is admissible within the ball $Q(0, R)$. Hence, from Lemma 2.3(C3) we obtain

$$
\begin{equation*}
\operatorname{deg}\left(A-\lambda_{k} B-S+g^{*}, Q(0, R), 0\right)=\operatorname{deg}\left(A-\left(\lambda_{k}+\delta_{k}\right) B, Q(0, R), 0\right) . \tag{3.21}
\end{equation*}
$$

Note that the right-hand side of (3.21) is an odd number by Lemma 2.3(C2) and $\lambda_{k}+\delta_{k} \in\left(\lambda_{k}, \lambda_{k+1}\right)$. Hence $\operatorname{deg}\left(A-\lambda_{k} B-S+g^{*}, Q(0, R), 0\right) \neq 0$, and Lemma 2.3(C1) implies that (3.16) has a weak solution. This completes the proof.

Example 3.1. Let $f(x, t)=b|t|^{p-2} t, t \in \mathbb{R}, x \in \Omega$. When $b \neq \lambda_{k}, k=1,2, \cdots,(H 1)$ holds. When $b>\mu_{1}^{-1}$, (H1) and (H2) hold.
Example 3.2. Let $f(t)=\arctan t, t \in \mathbb{R}$ and $g(x) \equiv 1, x \in \Omega$. Then $f(-\infty)=\lim _{t \rightarrow-\infty} f(t)=-\frac{\pi}{2}$, $f(+\infty)=\lim _{t \rightarrow+\infty} f(t)=\frac{\pi}{2}$, and

$$
\begin{aligned}
\int_{\Omega} & -\frac{\pi}{2} \varphi_{k}^{+}(x) d x-\int_{\Omega} \frac{\pi}{2} \varphi_{k}^{-}(x) d x=-\frac{\pi}{2} \int_{\Omega}\left|\varphi_{k}(x)\right| d x \\
& <\int_{\Omega} \varphi_{k}(x) d x<\int_{\Omega} \frac{\pi}{2} \varphi_{k}^{+}(x) d x-\int_{\Omega}-\frac{\pi}{2} \varphi_{k}^{-}(x) d x=\frac{\pi}{2} \int_{\Omega}\left|\varphi_{k}(x)\right| d x .
\end{aligned}
$$

Note that (H3) and (3.18) hold.

Acknowledgments

This work is supported by Suqian Sci\&Tech Program (grant No. K202134), Natural Science Foundation of Chongqing (grant No. cstc2020jcyj-msxmX0123), Technology Research Foundation of Chongqing Educational Committee (grant Nos. KJQN201900539 and KJQN202000528), the Key Laboratory Open Issue of School of Mathematical Science, Chongqing Normal University (grant No. CSSXKFKTM202003) and Natural Science Foundation of Chongqing Normal University (grant No. 17XLB002).

Conflict of interest

The authors declare that there are no conflicts of interest in this paper.

References

1. F. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc., 9 (1983), 1-39. http://dx.doi.org/10.1090/S0273-0979-1983-15153-4
2. K. Du, R. Peng, N. Sun, The role of protection zone on species spreading governed by a reaction-diffusion model with strong Allee effect, J. Differ. Equations, 266 (2019), 7327-7356. http://dx.doi.org/10.1016/j.jde.2018.11.035
3. G. Franzina, G. Palatucci, Fractional p-eigenvalues, Riv. Math. Univ. Parma., 5 (2014), 373-386.
4. B. Ge, Y. Cui, L. Sun, M. Ferrara, The positive solutions to a quasi-linear problem of fractional p-Laplacian type without the Ambrosetti-Rabinowitz condition, Positivity, 22 (2018), 873-895. http://dx.doi.org/10.1007/s11117-018-0551-z
5. K. Ho, K. Perera, I. Sim, M. Squassina, A note on fractional p-Laplacian problems with singular weights, J. Fixed Point Theory Appl., 19 (2017), 157-173. http://dx.doi.org/10.1007/s11784-016-0344-6
6. B. Hung, H. Toan, On existence of weak solutions for a p-Laplacian system at resonance, RACSAM, 110 (2016), 33-47. http://dx.doi.org/10.1007/s13398-015-0217-7
7. B. Hung, H. Toan, On fractional p-Laplacian equations at resonance, Bull. Malays. Math. Sci. Soc., 43 (2020), 1273-1288. http://dx.doi.org/10.1007/s40840-019-00740-w
8. A. Iannizzotto, S. Liu, K. Perera, M. Squassina, Existence results for fractional p-Laplacian problems via Morse theory, Adv. Calc. Var., 9 (2016), 101-125. http://dx.doi.org/10.1515/acv-2014-0024
9. A. Iannizzotto, M. Squassina, Weyl-type laws for fractional p-eigenvalue problems, Asymptotic Anal., 88 (2014), 233-245. http://dx.doi.org/10.3233/ASY-141223
10. X. Ke, C. Tang, Multiple solutions for semilinear elliptic equations near resonance at higher eigenvalues, Nonlinear Anal.-Theor., 74 (2011), 805-813. http://dx.doi.org/10.1016/j.na.2010.09.031
11. K. Lan, A variational inequality theory for demicontinuous S-contractive maps with applications to semilinear elliptic inequalities, J. Differ. Equations, 246 (2009), 909-928. http://dx.doi.org/10.1016/j.jde.2008.10.007
12. D. Liu, On a p-Kirchhoff equation via fountain theorem and dual fountain theorem, Nonlinear Anal.-Theor., 72 (2010), 302-308. http://dx.doi.org/10.1016/j.na.2009.06.052
13. S. Mosconi, K. Perera, M. Squassina, Y. Yang, The Brezis-Nirenberg problem for the fractional p-Laplacian, Calc. Var., 55 (2016), 105. http://dx.doi.org/10.1007/s00526-016-1035-2
14. Z . Ou, Existence of weak solutions for a class of (p, q)-Laplacian systems on resonance, Appl. Math. Lett., 50 (2015), 29-36. http://dx.doi.org/10.1016/j.aml.2015.06.004
15. R. Pei, Fractional p-Laplacian equations with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, Mediterr. J. Math., 15 (2018), 66. http://dx.doi.org/10.1007/s00009-018-1115-y
16. K. Perera, R. Agarwal, D. O'Regan, Morse theoretic aspects of p-Laplacian type operators, Providence: American Mathematical Society, 2010. http://dx.doi.org/10.1090/surv/161
17. K. Perera, M. Squassina, Y. Yang, A note on the Dancer-Fučík spectra of the fractional p-Laplacian and Laplacian operators, Adv. Nonlinear Anal., 4 (2015), 13-23. http://dx.doi.org/10.1515/anona-2014-0038
18. K. Perera, M. Squassina, Y. Yang, Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr, 289 (2016), 332-342. http://dx.doi.org/10.1002/mana. 201400259
19. Y. Pu, X. Wu, C. Tang, Fourth-order Navier boundary value problem with combined nonlinearities, J. Math. Anal. Appl., 398 (2013), 798-813. http://dx.doi.org/10.1016/j.jmaa.2012.09.019
20. X. Shang, Multiplicity theorems for semipositone p-Laplacian problems, Electron. J. Differ. Eq., 2011 (2011), 58.
21. I. Skrypnik, Nonlinear elliptic boundary value problems, Leipzig: Teubner, 1986.
22. N. Sun, X. Han, Asymptotic behavior of solutions of a reaction-diffusion model with a protection zone and a free boundary, Appl. Math. Lett., 107 (2020), 106470. http://dx.doi.org/10.1016/j.aml.2020.106470
23. N. Sun, A time-periodic reaction-diffusion-advection equation with a free boundary and signchanging coefficients, Nonlinear Anal.-Real, 51 (2020), 102952. http://dx.doi.org/10.1016/j.nonrwa.2019.06.002
24. N. Sun, J. Fang, Propagation dynamics of Fisher-KPP equation with time delay and free boundaries, Calc. Var., 58 (2019), 148. http://dx.doi.org/10.1007/s00526-019-1599-8
25. N. Sun, B. Lou, M. Zhou, Fisher-KPP equation with free boundaries and time-periodic advections, Calc. Var., 56 (2017), 61. http://dx.doi.org/10.1007/s00526-017-1165-1
26. N. Sun, C. Lei, Long-time behavior of a reactiondiffusion model with strong allee effect and free boundary: effect of protection zone, J. Dyn. Diff. Equat., in press. http://dx.doi.org/10.1007/s10884-021-10027-z
27. M. Xiang, B. Zhang, X. Guo, Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem, Nonlinear Anal.-Theor., 120 (2015), 299-313. http://dx.doi.org/10.1016/j.na.2015.03.015
28. J. Xu, W. Dong, D. O’Regan, Existence of weak solutions for a fourth-order Navier boundary value problem, Appl. Math. Lett., 37 (2014), 61-66. http://dx.doi.org/10.1016/j.aml.2014.01.003
29. W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343358. http://dx.doi.org/10.1007/s002290170032
30. J. Zuo, T. An, M. Li, Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition, Bound. Value Probl., 2018 (2018), 180. http://dx.doi.org/10.1186/s13661-018-1100-1

AIMS Press

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

