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1. Introduction

In this paper we use topological degree and the fountain theorem to study the existence of weak
solutions for the fractional p-Laplacian equation(−∆)s

pu = λ|u|p−2u + f (x, u) − g(x), x ∈ Ω,

u = 0, x ∈ RN\Ω,
(1.1)

where p ≥ 2, s ∈ (0, 1), λ is a parameter, Ω is a bounded domain in RN(N ≥ 3) with smooth boundary
∂Ω, f ∈ C(Ω × R,R), and g : Ω→ R is a perturbation function. The operator (−∆)s

p, defined by

(−∆)s
pu(x) := 2 lim

ε→0

∫
RN\Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+sp dy, x ∈ RN ,

where Bε(x) is the open ε-ball with center x and radius ε, is known as the fractional p-Laplacian and
leads to the study of the problem (−∆)s

pu(x) = h(x, u), x ∈ Ω,

u = 0, x ∈ RN\Ω.
(1.2)
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In the literature, there are many papers on the solvability for the fractional p-Laplacian, see for
example [2, 4, 5, 7, 8, 13, 15, 17, 18, 22–26]. In [15] the author used the mountain pass theorem and the
fractional Moser-Trudinger inequality to study nontrivial solutions for (1.2), where h is superlinear at 0,
and is of subcritical or critical exponential growth at∞, and does not satisfy the Ambrosetti-Rabinowitz
condition. In [8] the authors established existence and multiplicity results for weak solutions to (1.2)
using Morse Theory. In [4] the authors used truncation and comparison techniques to study the
Problem (1.2) with a nonlinearity of the form λg(x, u) − f (x, u).

It has been observed that the Landesman-Lazer type condition is an important tool to study different
types of differential equations, see for example [6, 7, 10, 14, 20, 28]. In [28] the authors used the
condition ∫

Ω

f (−∞)ϕ1(x)dx <
∫

Ω

g(x)ϕ1(x)dx <
∫

Ω

f (+∞)ϕ1(x)dx (1.3)

( f (±∞) = limu→±∞ f (u)) to study weak solutions for the fourth-order Navier boundary value problem{
∆2u(x) + c∆u(x) = λ1u(x) + f (u(x)) − g(x), in Ω,

u = ∆u = 0, on ∂Ω,

where λ1 is the first eigenvalue of the operator ∆2 + c∆, and ϕ1 is an eigenfunction associated with λ1.
In [7] the authors used similar conditions in (1.3) to study weak solutions for (1.1), where λ = λ1(λ1 is
the first eigenvalue of the operator (−∆)s

p).
In [10] the authors used minimax methods to study the semilinear elliptic equation:−∆u = λu + g(x, u) − h(x), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where h, g satisfy the Landesman-Lazer type condition:∫
Ω

hudx <
∫

Ω

F(x,−∞)u+dx −
∫

Ω

F(x,+∞)u−dx,

and

lim inf
t→−∞

F(x, t) = F(x,−∞), lim sup
t→+∞

F(x, t) = F(x,+∞) uniformly for x ∈ Ω,

F(x, t) =

2G(x,t)−g(x,t)t
t , t , 0,

g(x, 0), t = 0,
G(x, t) =

∫ t

0
g(x, s)ds.

Motivated by the above works, in this paper we use topological degree to study weak solutions
for (1.1). When λ = 0, g ≡ 0, we use a (p − 1)-asymptotically linear growth condition at ∞ to obtain
a weak solution result for (1.1). When λ = λk, and f , g satisfy the Landesman-Lazer type condition,
we obtain a weak solution result, where λk are the eigenvalues of the operator (−∆)s

p. Our methods are
different from those in [7, 14, 20], and the results here generalize and improve the corresponding ones
in their works and in [28].
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2. Preliminaries

Define the Gagliardo seminorm

[u]s,p =

(∫
RN

∫
RN

|u(x) − u(y)|p

|x − y|N+sp dxdy
) 1

p

,

where u : RN → R is a measurable function, and consider the fractional Sobolev space as follows:

W s,p
(
RN

)
=

{
u ∈ Lp

(
RN

)
: u is measurable and [u]s,p < +∞

}
endowed with the norm

‖u‖s,p =
(
‖u‖p

p + [u]p
s,p

) 1
p
,

where ‖ · ‖p is the norm in Lp(Ω). Let X(Ω) be the closed linear subspace

X(Ω) =
{
u ∈ W s,p

(
RN

)
: u(x) = 0 a.e. x ∈ RN\Ω

}
which can be equivalently renormed by setting ‖ · ‖ = [·]s,p(see [4, 7, 8]).

Lemma 2.1. (see [4,7,8]). (X(Ω), ‖ · ‖) is a uniformly convex Banach space. Moreover, the embedding
X(Ω) into Lq(Ω) is continuous for all 1 ≤ q ≤ p∗s and compact for all 1 ≤ q < p∗s, where p∗s =

N p
N−sp if

sp < N and p∗s = +∞ if sp ≥ N.

Now, we list some basic results on the topological degree of type (S )+.

Definition 2.1. (see [20]). Let X be a reflexive real Banach space and X∗ its dual. The operator
T : X → X∗ is said to satisfy the (S )+ condition if the assumptions un ⇀ u0 weakly in X and
lim supn→∞ 〈T (un) , un − u0〉 6 0 imply un → u0 strongly in X.

Definition 2.2. (see [11]). The operator T : X → X∗ is said to be demicontinuous if T maps strongly
convergent sequences in X to weakly convergent sequences in X∗

Lemma 2.2. (see [20]). Let T : X → X∗ satisfy the (S )+ condition and let K : X → X∗ be a compact
operator. Then the sum T + K : X → X∗ satisfies the (S )+ condition.

Lemma 2.3. (see [1, 20, 21]). Let T : X → X∗ be a bounded and demicontinuous operator satisfying
the (S )+ condition. LetD ⊂ X be an open, bounded and nonempty set with the boundary ∂D such that
T (u) , 0 for u ∈ ∂D. Then there exists an integer deg(T,D, 0) such that

(C1) deg(T,D, 0) , 0 implies that there exists an element u0 ∈ D such that T (u0) = 0.
(C2) If D is symmetric with respect to the origin and T satisfies T (u) = −T (−u) for any u ∈ ∂D,

then deg(T,D, 0) is an odd number.
(C3) Let Tλ be a family of bounded and demicontinuous mappings which satisfy the (S )+ condition

and which depend continuously on a real parameter λ ∈ [0, 1], and let Tλ(u) , 0 for any u ∈ ∂D and
λ ∈ [0, 1]. Then deg (Tλ,D, 0) is constant with respect to λ ∈ [0, 1].

Suppose that there exists a nontrivial weak solution ϕ(x), x ∈ Ω of the problem(−∆)s
pu = λ|u|p−2u, x ∈ Ω,

u = 0, x ∈ RN\Ω,
(2.1)
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where λ ∈ R is a parameter. Now, λ is called an eigenvalue of the eigenvalue Problem (2.1), and ϕ an
eigenfunction associated with the eigenvalue λ. Moreover, the set of all eigenvalues of (2.1) in X(Ω),
denoted by σ(s, p), has the following properties.

Lemma 2.4. (see [3, 4, 9, 16]). For the problem (2.1), we have
(D1) λ1 = minσ(s, p) is an isolated point of σ(s, p);
(D2) all λ1-eigenfunctions are proportional, and if u is a λ1-eigenfunction, then either u(x) > 0 a.e.

in Ω or u(x) < 0 a.e. in Ω;
(D3) if λ ∈ σ(s, p)\ {λ1} and u is a λ-eigenfunction, then u changes sign in Ω;
(D4) all eigenfunctions are in L∞(Ω);
(D5) σ(s, p) is a closed set.

For convenience, we use λk and ϕk(k = 1, 2, · · ·) to stand for the eigenvalues and the corresponding
eigenfunctions for the Problem (2.1), respectively. We know that 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · ·, λk → ∞

as k → +∞(see [8,17]), and ϕ1 > 0, ϕk(k = 2, 3, · · ·) are sign-changing functions in Ω. In the following
section, we assume

‖ϕk‖ = 1, k = 1, 2, · · · .

On the other hand, let Xi = span {ϕi}, Yk =
⊕k

i=1 Xi, Zk =
⊕∞

i=k+1 Xi, k = 1, 2, . . . Then from [30]
we have

X(Ω) =

∞⊕
i=1

Xi = Yk

⊕
Zk, dim Yk = k. (2.2)

Definition 2.3. Let X be a real Banach space, J ∈ C1(X,R) and c ∈ R. We say that J satisfies the (PS)c

condition if any sequence {um} ⊂ X such that

J (um)→ c and J′ (um)→ 0 as m→ ∞

has a convergent subsequence.

Lemma 2.5. (see [12, 27, 29]). Let Yk, Zk be defined in (2.2). Suppose that
(A1) J ∈ C1 (X(Ω),R) is an even functional.
If for every k ∈ N, there exist ρk > rk > 0 such that
(A2) ak := maxu∈Yk ,‖u‖=ρk J(u) 6 0.
(A3) bk := infu∈Zk ,‖u‖=rk J(u)→ ∞ as k → ∞.
(A4) J satisfies the (PS)c condition for all c > 0.

Then J has an unbounded sequence of critical values.

3. Main results

Define the nonlinear operator A : X(Ω)→ X(Ω)∗ as follows:

〈A(u), v〉 =

∫
RN

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp dxdy,∀u, v ∈ X(Ω).

Clearly, A is odd, (p − 1)-homogeneous, and for all u ∈ X(Ω) we have

〈A(u), u〉 = ‖u‖p, ‖A(u)‖∗ ≤ ‖u‖p−1.

AIMS Mathematics Volume 7, Issue 7, 13258–13270.



13262

Lemma 3.1. (see [4]). The operator A satisfies the (S )+ condition.

We first study the problem (−∆)s
pu = f (x, u), x ∈ Ω,

u = 0, x ∈ RN\Ω,
(3.1)

where p, s,N,Ω are as in (1.1), and f satisfies the (p − 1)-asymptotically linear condition:
(H1) lim|t|→∞

f (x,t)
|t|p−2t = b uniformly for x ∈ Ω with b , λk.

Theorem 3.1. Let (H1) hold. Then (3.1) has at least one weak solution.

Proof. A weak solution of Problem (1.1) is a function u ∈ X(Ω) such that

〈A(u), v〉 =

∫
Ω

f (x, u)vdx,∀v ∈ X(Ω).

From (H1) there exist ε0 > 0 and M0 > 0 such that

| f (x, t)| ≤ (|b| + ε0)|t|p−1, for x ∈ Ω, |t| > M0.

When x ∈ Ω, |t| ≤ M0, f (x, t) is bounded. Hence, there exists c0 > 0 such that

| f (x, t)| ≤ c0 + (|b| + ε0)|t|p−1, x ∈ Ω, t ∈ R. (3.2)

Let B, S : X(Ω)→ X(Ω)∗ be as follows:

〈B(u), v〉 =

∫
Ω

|u|p−2uvdx, 〈S (u), v〉 =

∫
Ω

f (x, u)vdx,∀v ∈ X(Ω).

Note that p < p∗s, f satisfies the subcritical Condition (3.2), and then B, S : X(Ω)→ X(Ω)∗ are compact
operators.

From the definitions of A, S , we know that if there is an u0 ∈ X(Ω) such that 〈A(u0), v〉 =

〈S (u0), v〉,∀v ∈ X(Ω), then u0 is a weak solution for (1.1). Now, we define a homotopy

Tτ(u) = A(u) − (1 − τ)S (u) − τbB(u), for τ ∈ [0, 1], u ∈ X(Ω), (3.3)

where b is in (H1). From Lemma 3.1 and Lemma 2.2 we have that Tτ satisfies the (S )+ condition.
Now we prove that there exists R > 0 such that this homotopy (3.3) is admissible within the ball
Q(0,R) ⊂ X(Ω). On the contrary, for any n ∈ N, there exist τn ∈ [0, 1] and un ∈ X(Ω), ‖un‖ > n such
that Tτn (un) = 0, i.e., A(un) − (1 − τn)S (un) − τnbB(un) = 0, and this can be rewritten in the form∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(v(x) − v(y))
|x − y|N+sp dxdy−(1−τn)

∫
Ω

f (x, un)vdx−τnb
∫

Ω

|un|
p−2unvdx = 0.

(3.4)
Let ωn = un

‖un ||
. Then, dividing (3.4) by ‖un‖

p−1, we have∫
RN

∫
RN

|ωn(x) − ωn(y)|p−2(ωn(x) − ωn(y))(v(x) − v(y))
|x − y|N+sp dxdy

− (1 − τn)
∫

Ω

f (x, un)
|un|

p−2un
|ωn|

p−2ωnvdx − τnb
∫

Ω

|ωn|
p−2ωnvdx = 0.

(3.5)
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Note the definitions of ωn, τn, and we may assume that ωn ⇀ ω weakly in X(Ω), ωn → ω strongly in
Lp(Ω), and τn → τ ∈ [0, 1]. Moreover, we also have a basic result from Lemma 2.2 of [19]:∫

Ω

f (x, un)
|un|

p−2 un
|ωn|

p−2 ωnvdx→
∫

Ω

b|ω|p−2ωvdx. (3.6)

Therefore, let n→ ∞ in (3.5) and we have

〈A(ω), v〉 − (1 − τ)
∫

Ω

b|ω|p−2ωvdx − τb
∫

Ω

|ω|p−2ωvdx = 0,

i.e., 〈A(ω), v〉 = b〈B(ω), v〉,∀v ∈ X(Ω), and this contradicts b , λk. Thus our claim is true, i.e., the
homotopy Tτ is admissible within the ball Q(0,R). Hence, from Lemma 2.3(C3) we have

deg (A − S ,Q(0,R), 0) = deg (A − bB,Q(0,R), 0) . (3.7)

Note that the right-hand side of (3.7) is an odd number by Lemma 2.3(C2) and b , λk. Hence
deg (A − S ,Q(0,R), 0) , 0, and Lemma 2.3(C1) implies that (1.1) has a weak solution. This completes
the proof. �

In Section 2 we know that for any fixed k ∈ N, dim Yk = k < ∞, and all norms in finite dimensional
spaces are equivalent, and thus for all u ∈ Yk there exists a positive constant µ1 such that

µ1‖u‖p ≤ ‖u‖p
p, u ∈ Yk. (3.8)

Condition (H1) is only needed to guarantee that (1.1) has at least one weak solution (see
Theorem 3.1). To obtain that (1.1) has infinitely many weak solutions, we need an extra assumption,
namely

(H2) f (x, t) + f (x,−t) = 0 for x ∈ Ω, t ∈ R.

Theorem 3.2. Let (H1) and (H2) hold with b > µ−1
1 . Then (3.1) has infinitely many weak solutions.

Proof. We define the energy functional J as follows:

J(u) =
1
p
‖u‖p −

∫
Ω

F(x, u)dx, (3.9)

where F(x, u) =
∫ u

0
f (x, t)dt. Note that (3.2) implies that J is well defined on X(Ω), and of class C1.

We first prove that J satisfies the (PS)c condition for all c > 0. Assume that {un} ⊂ X(Ω) is a (PS)c

sequence, i.e.,
J (un)→ c and J′ (un)→ 0 as n→ ∞. (3.10)

Now, we claim that {un} is bounded in X(Ω). If not, we may assume that there is a subsequence of {un},
still denoted by {un}, such that ‖un‖ → +∞ as n → ∞. Let ωn = un

‖un‖
. Then {ωn} is bounded, ‖ωn‖ = 1,

and there exists ω ∈ X(Ω) such that

ωn ⇀ ω weakly in X(Ω), ωn → ω strongly in Lq(Ω) with q ∈ [1, p∗s), ωn(x)→ ω(x), a.e. x ∈ Ω.

(3.11)
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If ω(x) ≡ 0, x ∈ Ω, note that J (un)→ c, ‖un‖ → +∞ as n→ ∞, then dividing (3.9) by ‖un‖
p we have

1
p
−

∫
Ω

F(x, un)
‖un‖

p dx =
J(un)
‖un‖

p → 0, as n→ ∞. (3.12)

From (3.2) we have

|F(x, u)| =

∣∣∣∣∣∣
∫ 1

0
f (x, us)uds

∣∣∣∣∣∣ ≤
∫ 1

0
(c0 + (|b| + ε0)|us|p−1)|u|ds ≤ c0|u| + (|b| + ε0)|u|p,∀x ∈ Ω, u ∈ R.

Together with this and the Lebesgue dominated convergence theorem we find∣∣∣∣∣∫
Ω

F(x, un)
‖un‖

p dx
∣∣∣∣∣ ≤ ∫

Ω

|F(x, un)|
‖un‖

p dx ≤
∫

Ω

c0|un| + (|b| + ε0)|un|
p

|un|
p |ωn|

pdx→ 0, as n→ ∞.

This is a contradiction with (3.12), and hence ω(x) . 0, x ∈ Ω.
Note that J′ is

〈J′(u), v〉 = 〈A(u), v〉 −
∫

Ω

f (x, u)vdx, ∀v ∈ X(Ω).

Then, dividing this equation by ‖un‖
p−1 we have

〈J′(un), v〉
‖un‖

p−1 =
〈A(un), v〉
‖un‖

p−1 −

∫
Ω

f (x, un)
‖un‖

p−1 vdx,

and from (3.10) we obtain

〈A(ωn), v〉 =

∫
Ω

f (x, un)
|un|

p−2un
|ωn|

p−2ωnvdx + o(1).

Let n→ ∞. Then from (3.6) and (3.11) we have

〈A(ω), v〉 = b
∫

Ω

|ω|p−2ωvdx.

This is a contradiction with b , λk.
As a result, {un} is a bounded sequence. Thus, there exist a subsequence(still denoted by {un}) and

u ∈ X(Ω) such that

un ⇀ u weakly in X(Ω), un → u strongly in Lq(Ω) with q ∈ [1, p∗s), un(x)→ u(x), a.e. x ∈ Ω. (3.13)

Consequently, from (3.2) we have∣∣∣∣∣∫
Ω

( f (x, un) − f (x, u))(un − u)dx
∣∣∣∣∣ ≤ ∫

Ω

|2c0 + (|b| + ε0)(|un|
p−1 + |u|p−1)||un − u|dx

≤ 2c0[meas(Ω)]
p−1

p ‖un − u‖p + (|b| + ε0)(‖un‖
p−1
p + ‖u‖p−1

p )‖un − u‖p

→ 0.

Obviously, 〈J′(un) − J′(u), un − u〉 = o(1). Hence, we have

〈A(un) − A(u), un − u〉 = 0, as n→ ∞. (3.14)
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Using the Hölder inequality, we get∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(u(x) − u(y))
|x − y|N+sp dxdy

=

∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(u(x) − u(y))

(|x − y|N+sp)
p−1

p (|x − y|N+sp)
1
p

dxdy

≤

∫
RN

∫
RN

∣∣∣∣∣∣∣ |un(x) − un(y)|p−2(un(x) − un(y))

(|x − y|N+sp)
p−1

p

∣∣∣∣∣∣∣
p

p−1

dxdy


p−1

p ∫
RN

∫
RN

∣∣∣∣∣∣∣ u(x) − u(y)

(|x − y|N+sp)
1
p

∣∣∣∣∣∣∣
p

dxdy


1
p

= ‖un‖
p−1‖u‖.

Combining this with (3.14) we have

o(1) =

∫
RN

∫
RN

|un(x) − un(y)|p

|x − y|N+sp dxdy −
∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(u(x) − u(y))
|x − y|N+sp dxdy

−

∫
RN

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))(un(x) − un(y))
|x − y|N+sp dxdy +

∫
RN

∫
RN

|u(x) − u(y)|p

|x − y|N+sp dxdy

≥ ‖un‖
p − ‖u‖‖un‖

p−1 − ‖un‖‖u‖p−1 + ‖u‖p

= (‖un‖ − ‖u‖)(‖un‖
p−1 − ‖u‖p−1)

≥ 0.

This implies that ‖un‖ → ‖u‖, i.e., un → u strongly in X(Ω). Therefore, J satisfies the (PS)c condition
for all c > 0, as required.

From (H1) we have lim|t|→∞
f (x,t)
|t|p−2t > µ

−1
1 uniformly for x ∈ Ω, and there exits ε1 > 0, c1 > 0 such that

f (x, t) ≥ (µ−1
1 + ε1)|t|p−2t − c1, for t ∈ R, x ∈ Ω.

This implies that

F(x, t) ≥
µ−1

1 + ε1

p
|t|p − c1|t|, for t ∈ R, x ∈ Ω.

For any u ∈ Yk, and from (3.8) we obtain

J(u) ≤
1
p
‖u‖p −

∫
Ω

[
µ−1

1 + ε1

p
|u|p − c1|u|

]
dx ≤

1
p
‖u‖p

(
1 − (µ−1

1 + ε1)µ1

)
+ c1‖u‖1.

Note that 1 − (µ−1
1 + ε1)µ1 < 0 and p ≥ 2, there exist positive constants dk such that

J(u) ≤ 0, for u ∈ Yk, ‖u‖ ≥ dk. (3.15)

Note that λk → +∞ as k → ∞, and thus there exists k ∈ N such that b < λk+1. Then using the limit
lim|t|→∞

f (x,t)
|t|p−2t < λk+1 uniformly for x ∈ Ω, and there exits ε2 > 0, c2 > 0 such that

f (x, t) ≤ (λk+1 − ε2)|t|p−2t + c2, for t ∈ R, x ∈ Ω.
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This implies that

F(x, t) ≤
λk+1 − ε2

p
|t|p + c2|t|, for t ∈ R, x ∈ Ω.

For all u ∈ Zk, let βk = supu∈Zk ,‖u‖=1 ‖u‖p. From Lemma 2.1 and Lemma 4.1 in [30], βk → 0 as k → ∞.
Note that from (2.2) and [8, Lemma 4.5] we have

‖u‖p ≥ λk+1‖u‖p
p, for u ∈ Zk.

Therefore, we obtain

J(u) ≥
1
p
‖u‖p −

∫
Ω

[
λk+1 − ε2

p
|u|p + c2|u|

]
dx ≥

1
p
‖u‖p

(
1 −

λk+1 − ε2

λk+1

)
− c2[meas(Ω)]

p−1
p βk‖u‖.

Let rk = β−1
k . Then rk → +∞ as k → ∞, and

J(u) ≥
1
p

(
1 −

λk+1 − ε2

λk+1

)
rp

k − c2[meas(Ω)]
p−1

p → +∞, as k → ∞.

Hence,
bk = inf

u∈Zk ,‖u‖=rk
J(u)→ +∞ as k → ∞,

and let ρk = max{dk, rk + 1} from (3.15) we have

ak = max
u∈Yk ,‖u‖=ρk

J(u) ≤ 0.

Note that (H2) implies that J is an even functional, and we obtain all the conditions in Lemma 2.5 are
satisfied, J has an unbounded sequence of critical values, i.e., (3.1) has infinitely many weak solutions.
This completes the proof. �

Next we consider the following problem(−∆)s
pu = λk|u|p−2u + f (u) − g(x), x ∈ Ω,

u = 0, x ∈ RN\Ω,
(3.16)

where p, s,N,Ω, g are as in (1.1), and f ∈ C(R,R) satisfies the condition:
(H3) f is bounded and has finite limits f (+∞), f (−∞) such that

f (+∞) = lim
u→+∞

f (u), f (−∞) = lim
u→−∞

f (u).

Theorem 3.3. Suppose that (H3) holds. Let g ∈ Lp′(Ω)(p′ =
p

p−1 ) with g(x) . 0 in Ω be a given
function, and satisfies either∫

Ω

f (+∞)ϕ+
k (x)dx −

∫
Ω

f (−∞)ϕ−k (x)dx <
∫

Ω

g(x)ϕk(x)dx <
∫

Ω

f (−∞)ϕ+
k (x)dx −

∫
Ω

f (+∞)ϕ−k (x)dx,

(3.17)
or∫

Ω

f (−∞)ϕ+
k (x)dx −

∫
Ω

f (+∞)ϕ−k (x)dx <
∫

Ω

g(x)ϕk(x)dx <
∫

Ω

f (+∞)ϕ+
k (x)dx −

∫
Ω

f (−∞)ϕ−k (x)dx,

(3.18)
where ϕ+

k and ϕ−k respectively denote the positive and negative parts of ϕk for k = 1, 2, . . . . Then (3.16)
has at least one weak solution.
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Proof. Let 〈g∗, v〉 =
∫

Ω
g(x)vdx,∀v ∈ X(Ω). Note that g ∈ Lp′(Ω) with p′ =

p
p−1 , and we have g∗ is

a compact operator. Note that f is bounded in R, we obtain lim|t|→∞
f (t)
|t|p−2t = 0. This implies that (3.2)

holds, and the operator 〈S (u), v〉 =
∫

Ω
f (u)vdx,∀v ∈ X(Ω) is also compact on X(Ω). Choosing δk ∈

(0, λk+1 − λk), and we can define a homotopy as follows:

Tτ(u) = A(u) − λkB(u) − (1 − τ)δkB(u) − τS (u) + τg∗, u ∈ X(Ω), τ ∈ [0, 1].

We now prove that there exists R > 0 such that this homotopy is admissible within the ball Q(0,R) ⊂
X(Ω). We argue by contradiction. For any n ∈ N, assume there exist τn ∈ [0, 1] and un ∈ X(Ω), ‖un‖ ≥ n
such that Tτn(un) = 0, and this can be expressed by

〈A(un), v〉 − λk〈B(un), v〉 − (1 − τn)δk〈B(un), v〉 − τn〈S (un), v〉 + τn〈g∗, v〉 = 0,∀v ∈ X(Ω). (3.19)

Let ωn = un
‖un ||

. Then, dividing (3.19) by ‖un‖
p−1, we obtain

〈A(ωn), v〉 − λk〈B(ωn), v〉 − (1 − τn)δk〈B(ωn), v〉 − τn
〈S (un), v〉
‖un‖

p−1 + τn
〈g∗, v〉
‖un‖

p−1 = 0,∀v ∈ X(Ω). (3.20)

Using the conditions for f , g we have

lim
n→∞

|〈g∗, v〉|
‖un‖

p−1 = lim
n→∞

1
‖un‖

p−1

∣∣∣∣∣∫
Ω

g(x)vdx
∣∣∣∣∣ ≤ lim

n→∞

‖g‖p′‖v‖p

‖un‖
p−1 = 0,

and note that f is bounded on R, so we have

lim
n→∞

|〈S (un), v〉|
‖un‖

p−1 = lim
n→∞

1
‖un‖

p−1

∣∣∣∣∣∫
Ω

f (un)vdx
∣∣∣∣∣ ≤ lim

n→∞

1
‖un‖

p−1

∫
Ω

M |v| dx = 0,

where M is a positive constant. Let ωn ⇀ ω weakly in X(Ω), ωn → ω strongly in Lp(Ω), and
τn → τ ∈ [0, 1]. Then from (3.20) we have

〈A(ω), v〉 − λk〈B(ω), v〉 − (1 − τ)δk〈B(ω), v〉 = 0,∀v ∈ X(Ω).

Note that λk + (1 − τ)δk, τ ∈ [0, 1) is not eigenvalues for (2.1), so we only consider τ = 1. Hence, we
have

〈A(ω), v〉 − λk〈B(ω), v〉 = 0,∀v ∈ X(Ω).

As a result, ω = ±ϕk, and un = ωn‖un‖ → ±ϕk‖un‖. Thus, we have

〈A(un), v〉 − λk〈B(un), v〉 → 0,∀v ∈ X(Ω).

In what follows, we consider two cases:

Case 3.1. ω = ϕk, i.e., ωn → ϕk. Hence, un → +∞ in Ω ∩ {x : ϕk(x) ≥ 0}, un → −∞ in Ω ∩ {x :
ϕk(x) ≤ 0}. Let n→ ∞ and v = ϕk, and from (3.19) we have

〈g∗, ϕk〉 =

∫
Ω

g(x)ϕk(x)dx = lim
n→∞
〈S (un), ϕk〉 = lim

n→∞

∫
Ω

f (un)ϕk(x)dx

= lim
n→∞

∫
Ω

f (un)(ϕ+
k (x) − ϕ−k (x))dx =

∫
Ω

[ f (+∞)ϕ+
k (x) − f (−∞)ϕ−k (x)]dx.
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Case 3.2. ω = −ϕk, i.e., ωn → −ϕk. Hence, un → −∞ in Ω ∩ {x : ϕk(x) ≥ 0}, un → +∞ in
Ω ∩ {x : ϕk(x) ≤ 0}. Let n→ ∞ and v = ϕk, and from (3.19) we have

〈g∗, ϕk〉 =

∫
Ω

g(x)ϕk(x)dx = lim
n→∞
〈S (un), ϕk〉 = lim

n→∞

∫
Ω

f (un)ϕk(x)dx

= lim
n→∞

∫
Ω

f (un)(ϕ+
k (x) − ϕ−k (x))dx =

∫
Ω

[ f (−∞)ϕ+
k (x) − f (+∞)ϕ−k (x)]dx.

The above two cases contradict (3.17) or (3.18). This proves that the homotopy Tτ(u) is admissible
within the ball Q(0,R). Hence, from Lemma 2.3(C3) we obtain

deg(A − λkB − S + g∗,Q(0,R), 0) = deg(A − (λk + δk)B,Q(0,R), 0). (3.21)

Note that the right-hand side of (3.21) is an odd number by Lemma 2.3(C2) and λk + δk ∈ (λk, λk+1).
Hence deg (A − λkB − S + g∗,Q(0,R), 0) , 0, and Lemma 2.3(C1) implies that (3.16) has a weak
solution. This completes the proof. �

Example 3.1. Let f (x, t) = b|t|p−2t, t ∈ R, x ∈ Ω. When b , λk, k = 1, 2, · · · , (H1) holds. When b > µ−1
1 ,

(H1) and (H2) hold.

Example 3.2. Let f (t) = arctan t, t ∈ R and g(x) ≡ 1, x ∈ Ω. Then f (−∞) = limt→−∞ f (t) = −π2 ,
f (+∞) = limt→+∞ f (t) = π

2 , and∫
Ω

−
π

2
ϕ+

k (x)dx −
∫

Ω

π

2
ϕ−k (x)dx = −

π

2

∫
Ω

|ϕk(x)|dx

<

∫
Ω

ϕk(x)dx <
∫

Ω

π

2
ϕ+

k (x)dx −
∫

Ω

−
π

2
ϕ−k (x)dx =

π

2

∫
Ω

|ϕk(x)|dx.

Note that (H3) and (3.18) hold.
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