Research article

The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory

  • Received: 10 March 2022 Revised: 19 April 2022 Accepted: 20 April 2022 Published: 06 May 2022
  • MSC : 26A33, 35R11, 35B44

  • In this article, we focus on the blow-up problem of solution to Caputo-Hadamard fractional diffusion equation with fractional Laplacian and nonlinear memory. By virtue of the fundamental solutions of the corresponding linear and nonhomogeneous equation, we introduce a mild solution of the given equation and prove the existence and uniqueness of local solution. Next, the concept of a weak solution is presented by the test function and the mild solution is demonstrated to be a weak solution. Finally, based on the contraction mapping principle, the finite time blow-up and global solution for the considered equation are shown and the Fujita critical exponent is determined. The finite time blow-up of solution is also confirmed by the results of numerical experiment.

    Citation: Zhiqiang Li. The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory[J]. AIMS Mathematics, 2022, 7(7): 12913-12934. doi: 10.3934/math.2022715

    Related Papers:

  • In this article, we focus on the blow-up problem of solution to Caputo-Hadamard fractional diffusion equation with fractional Laplacian and nonlinear memory. By virtue of the fundamental solutions of the corresponding linear and nonhomogeneous equation, we introduce a mild solution of the given equation and prove the existence and uniqueness of local solution. Next, the concept of a weak solution is presented by the test function and the mild solution is demonstrated to be a weak solution. Finally, based on the contraction mapping principle, the finite time blow-up and global solution for the considered equation are shown and the Fujita critical exponent is determined. The finite time blow-up of solution is also confirmed by the results of numerical experiment.



    加载中


    [1] K. B. Oldham, J. Spanier, The fractional calculus, New York: Academic Press, 1974.
    [2] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Amsterdam: Gordon and Breach Science, 1993.
    [3] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [5] Y. G. Sinai, The limiting behavior of a one-dimensional random walk in a random medium, Theor. Probab. Appl., 27 (1983), 256–268. https://doi.org/10.1007/978-1-4419-6205-8 doi: 10.1007/978-1-4419-6205-8
    [6] H. Schiessel, I. M. Sokolov, A. Blumen, Dynamics of a polyampholyte hooked around an obstacle, Phys. Rev. E, 56 (1997), R2390–R2393. https://doi.org/10.1103/PhysRevE.56.R2390 doi: 10.1103/PhysRevE.56.R2390
    [7] S. I. Denisov, H. Kantz, Continuous-time random walk theory of superslow diffusion, Europhys Lett., 92 (2010), 30001. https://doi.org/10.1209/0295-5075/92/30001 doi: 10.1209/0295-5075/92/30001
    [8] W. T. Ang, Hypersingular integral equations in fracture analysis, Amsterdam: Elsevier, 2014.
    [9] R. Garra, F. Mainardi, G. Spada, A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus, Chaos Soliton. Fract., 102 (2017), 333–338. https://doi.org/10.1016/j.chaos.2017.03.032 doi: 10.1016/j.chaos.2017.03.032
    [10] Y. Liang, S. Wang, W. Chen, Z. Zhou, R. L. Magin, A survey of models of ultraslow diffusion in heterogeneous materials, Appl. Mech. Rev., 71 (2019), 040802. https://doi.org/10.1115/1.4044055 doi: 10.1115/1.4044055
    [11] A. De Gregorio, R. Garra, Hadamard-type fractional heat equations and ultra-slow diffusions, Fractal Fract., 5 (2021), 48. https://doi.org/10.3390/fractalfract5020048 doi: 10.3390/fractalfract5020048
    [12] J. Hadamard, Essai sur létude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 8 (1892), 101–186.
    [13] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204.
    [14] C. P. Li, Z. Q. Li, Asymptotic behaviors of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian, Int. J. Comput. Math., 98 (2021), 305–339.
    [15] C. P. Li, Z. Q. Li, Asymptotic behaviors of solution to partial differential equation with Caputo-Hadamard derivative and fractional Laplacian: Hyperbolic case, Discrete Cont. Dyn.-S., 14 (2021), 3659–3683. https://doi.org/10.3934/dcdss.2021023 doi: 10.3934/dcdss.2021023
    [16] C. P. Li, Z. Q. Li, The blow-up and global existence of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian, J. Nonlinear Sci., 31 (2021), 80. https://doi.org/10.1007/s00332-021-09736-y doi: 10.1007/s00332-021-09736-y
    [17] C. P. Li, Z. Q. Li, Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation, J. Nonlinear Sci., 31 (2021), 31. https://doi.org/10.1007/s00332-021-096918 doi: 10.1007/s00332-021-096918
    [18] L. Ma, Blow-up phenomena profile for Hadamard fractional differential systems in finite time, Fractals, 27 (2019), 1950093. https://doi.org/10.1142/S0218348X19500932 doi: 10.1142/S0218348X19500932
    [19] L. Ma, Comparative analysis on the blow-up occurrence of solutions to Hadamard type fractional differential systems, Int. J. Comput. Math., 99 (2022), 895–908. https://doi.org/10.1080/00207160.2021.1939020 doi: 10.1080/00207160.2021.1939020
    [20] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2011), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [21] C. Bucur, E. Valdinoci, Non-local diffusion and applications, Cham: Springer, 2016.
    [22] X. Ros-Oton, Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3–26. https://doi.org/10.5565/PUBLMAT_60116_01 doi: 10.5565/PUBLMAT_60116_01
    [23] M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Frac. Calc. Appl. Anal., 20 (2017), 7–51. https://doi.org/10.1515/fca-2017-0002 doi: 10.1515/fca-2017-0002
    [24] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t} = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109–124.
    [25] F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29–40.
    [26] T. Cazenave, F. Dickstein, F. B. Weissler, An equation whose Fujita critical exponent is not given by scaling, Nonlinear Anal., 68 (2008), 862–874. https://doi.org/10.1016/j.na.2006.11.042 doi: 10.1016/j.na.2006.11.042
    [27] P. Souplet, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29 (1998), 1301–1334. https://doi.org/10.1137/S0036141097318900 doi: 10.1137/S0036141097318900
    [28] A. Z. Fino, M. Kirane, Qualitative properties of solutions to a time-space fractional evolution equation, Quart. Appl. Math., 70 (2012), 133–157. https://doi.org/10.1090/S0033-569X-2011-01246-9 doi: 10.1090/S0033-569X-2011-01246-9
    [29] Y. N. Li, Q. G. Zhang, Blow-up and global existence of solutions for a time fractional diffusion equation, Frac. Calc. Appl. Anal., 21 (2018), 1619–1640. https://doi.org/10.1515/fca-2018-0085 doi: 10.1515/fca-2018-0085
    [30] C. P. Li, M. Cai, Theory and numerical approximations of fractional integrals and derivatives, Philadelphia: SIAM, 2019.
    [31] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [32] A. A. Kilbas, M. Saigo, $H$-transforms: Theory and applications, Boca Raton: CRC Press, 2004.
    [33] H. M. Srivastava, K. C. Gupta, S. P. Goyal, The $H$-functions of one and two variables with applications, New Delhi: South Asian, 1982.
    [34] Q. G. Zhang, Y. N. Li, The critical exponent for a time fractional diffusion equation with nonlinear memory, Math. Meth. Appl. Sci., 41 (2018), 6443–6456. https://doi.org/10.1002/mma.5169 doi: 10.1002/mma.5169
    [35] M. Gohar, C. P. Li, Z. Q. Li, Finite difference methods for Caputo-Hadamard fractional differential equations, Mediterr. J. Math., 17 (2020), 194. https://doi.org/10.1007/s00009-020-01605-4 doi: 10.1007/s00009-020-01605-4
    [36] S. W. Duo, H. W. V. Wyk, Y. Z. Zhang, A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem, J. Comput. Phys., 355 (2018), 233–252. https://doi.org/10.1016/j.jcp.2017.11.011 doi: 10.1016/j.jcp.2017.11.011
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1379) PDF downloads(89) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog