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solutions of the corresponding linear and nonhomogeneous equation, we introduce a mild solution
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Keywords: Caputo-Hadamard derivative; fractional Laplacian; nonlinear memorys; finite time
blow-up; fixed point argument
Mathematics Subject Classification: 26A33, 35R11, 35B44

1. Introduction

The main purpose of this paper is to study the finite time blow-up to time-space fractional partial
differential equation in the following form

(1.1)

cnD u(x, 1) + (=A)u(x, 1) =sD, 7 (ulP ' u)(x, 1), x € R, t > a > 0,
u(x, a) = uy(x), x € RY,

where d € N, 0 < a <y < 1,0 < s < 1, p > 1, the operators czDg,, (—A)*, and HD;’(,I_Y)

respectively denote the Caputo-Hadamard fractional derivative, fractional Laplacian, and Hadamard
fractional integral, and the initial value u,(x) € Co(R%), where Co(RY) = {v € C(RY) | |llim u(x) = 0).
X[— 00

Fractional calculus has attracted considerable attention during recent years because of its
widespread applications in science and engineering fields such as physics, chemistry, biology,
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anomalous diffusion, control theory of dynamical systems, etc., see [1-4]. It has been found
that Hadamard-type fractional calculus had many potential applications [5—11], for example, the
ultraslowly diffusive process such as Sinai diffusion [5], fractal analysis [8], the Lomnitz logarithmic
creep law in rheology [9], and some studies in this respect have been available [12—19]. The fractional
Laplacian is a typically nonlocal pseudo-differential operator, which appears in different disciplines of
mathematics and various applications, see [20-23] and the list of references therein.

We next recall some pioneering work on the blow-up problem for fractional diffusion equation, here
we only mention the results related to our studies.

In the 1960s, Fujita [24] first considered the following semilinear heat equation

u,=Au+u"t xeR >0,
(1.2)

u|l‘:0 = MO(X)’ X € Rda

where @ > 0 and uy(x) > 0. In that paper, the author shown that: If ug(x) # O and 0 < @ < 5 then
the solution of (1.2) blows up in finite time; If @ > % and the initial value uy(x) can be bounded by
sufficiently small Gaussian then the solution of (1.2) exists globally. As for the critical case @ = %,
Weissler [25] proved that (1.2) has a global solution when ”MOHLQTd(Rd) is sufficiently small.
Later, Cazenave et al. [26] studied the following Cauchy problem of heat equation with nonlinear
memory
!
u;, — Au = f(t — D) u)P ' u(r)dr, x e RY 1> 0,
0 (1.3)
uli—o = up(x), x € RY,

where p > 1,0 <y < 1, and uy € Co(RY). Let p, = 2222 with (d — 2 + 2y), = max{0,d — 2 + 2y).

T (d-242y)4
They proved that: If y # 0, p < max({ %, Dy} g 2 0, and uy # O, then the solution of (1.3) blows up in
finite time; if y # 0, p > max{%, Dy} and [luo||ose ey 1s sufficiently small with g, = di;_:;i), then (1.3) has

global solution. In the case with y = 0, every nontrivial positive solution of (1.3) will blow up [27].
In [28], Fino and Kirane further investigated the equation involving fractional Laplacian with
nonlinear memory

1 !
u, + (—A)‘%u = f (t = D) u@)P u(r)dr, x e RY, 1 > 0,
I(1-v)Jo

Uli=o = up(x), x € R,

(1.4)

where 0 < 8 <2,0 <y < 1,p > 1, and uy € Co(R?Y). They derived that: If uy > 0,uy % 0, and

BC—y) 1 : : : R BC2-y) 1
p < max{l+ B 7}, then the SOluth;l of (1.4) will blow up in finite time; if p > max{1+ PR y}
and ||uol|rs ey 18 very small with p,. = ﬁg:i;’ then (1.4) exists global solution.

Shortly after, Li and Zhang [29] discussed the following time fractional diffusion equation involving
Caputo derivative with nonlinear memory

1
-y
Ui=o = up(x), x € RY,

!
cDgu— Au = f (t — ) u@)P u(r)dr, x e RY, > 0,
0

(1.5)
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where 0 < a <y < 1, p > 1, and uy € Cy(R?). They proved that: If 1 < p < p* = max{l + %,1 +

209y and uy > 0 with uy # 0, then the solution of (1.5) will blow up in finite time; if d < 2222

ad 1—y
with p > p* ord > M with p > p*, and ||u|| 4 re) is small enough, where ¢, = ad(‘; __1;), then (1.5)

2(1+
has global solution.
Recently, Li and Li [16] investigated the semilinear time-space fractional diffusion equation
involving Caputo-Hadamard derivative and fractional Laplacian,

{CHDZJM(X, 1)+ (=A)'u(x, 1) = lu(x, P u(x, 1), x R, t > a > 0, (1.6)

u(x,a) = uy(x), x € RY,

where 0 < < 1,0 < s <1, p > 1,and u, € Co(R?). They obtained that: If 1 < p < = and u, > 0 with

u, # 0, then the solution of (1.6) will blow up in finite time; Conversely, if p > 1 + and ll2tallox ray 18
dip-1

sufficiently small, where g. = =5—, then (1.6) has a global solution.

Motivated mathematically by the results and methods in [16], this paper will further study the
blow-up property and global solution to time-space fractional diffusion equation (1.1) with nonlinear
memory. The main result is displayed in the following theorem.

Theorem 1.1. Letd e N, 0 <a <y <1,0<s<1,and p > 1. Assume that u, € Co(R?) and u, > 0
with u, # 0.

() If1 < p<p=max{l + = 21+ @} then the mild solution of Eq (1.1) will blow up in finite
time.

) Ifd < W,p >pord> %ﬂ;—”,p > p, and |[ugl| ey is small enough with p* =
then Eq (1.1) exists global solution.

ad(p-1)
2s(1+a—y)’

The organization of this paper is as follows. Section 2 recalls some basic definitions and presents
several important lemmas. In Section 3, we define a mild solution to Eq (1.1) and then prove the local
existence and uniqueness of the mild solution. Then, a weak solution of Eq (1.1) is introduced and
the mild solution is actually proved to be a weak solution. Next, we show the finite time blow-up and
global existence of the solution to Eq (1.1) in Section 4. Finally, an illustrative example is provided
to verify the blow-up of solution in finite time in Section 5. The conclusions are given in the last
section. Throughout the paper, we use the letter C to denote a generic positive constant which may
take different values at different places.

2. Preliminaries

Let us recall some basic definitions and several important lemmas, which will be applied in the next
sections.

Definition 2.1. [4,30] Let a function f(t) be defined on the interval (a,b) (0 < a < b < +o0) and
a > 0. The left- and right- sided Hadamard fractional integrals of the function f(t) with order a are
given by

d
DL f(1) = @ )f - f(r);,wa, 2.1)

and

1 b a-1 d
D30 = [ (log§) o i<, 02)
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where the Gamma function I'(§) = fooo e ' dr.

Definition 2.2. [4,31] Let a function f(t) be defined on the interval (a,b)(0 < a < b < +00) and
n—1<a<neN. The left- and right- sided Caputo-Hadamard fractional derivative of the function
f(t) with order a can be written as

cnDe, (D) =uD, [ £ (1)]

1 ! et dr
_ r(n_a)fa(log ;) 10, 1> a, 2.3)

and

cnD () = (1) 5D 8" £(1)]
B (_1)11 b
T T(n-a) ‘

n—a-1 d
(log ;) 50, 1 <b, 2.4)
T

where 8" f(1) = (12)" (1),
Definition 2.3. [2,20,30] The fractional Laplacian (—A)* with s € (0, 1) is defined by

v(X) = v(y)

d
oy v VxR (2.5)

(-A)'v(x) = C(d, s) P.V. f
R

where P.V. denotes the Cauchy principle value and the constant
1 —cosy B
Cd,s) = —— 14
@) (fR i y)

To define a mild solution of Eq (1.1), let us consider the following linear equation,

foranyy = (Y1,)’2a e 5yd) € Rd'

cuDeu(x, 1) + (=A)’u(x, 1) = f(x,1), x eR?, 1> a >0, 06
u(x,a) = uy(x), x € RY, '
whose solution is expressed by [14]
! t dr
) =Gox,0) 0,00 + [ Gy (x.a2 )« fx, S
o T T
! t dr
= [ Gux-yoouiay+ [ [ G(x-yat) romay T @.7)
R4 a JRI T T
where G,(x, 1) and G (X, t) are the fundamental solutions given by
1 x| (1,1); (1, )
Ga(x, 1) = H21( > B ) 28
o0 = B\ Bog | (1,1, (4, ;1 9) 28)
and
(IOg 1)0_1 . |X|2s (l 1) (a, a,)
G (x,1) = 2 H( ) 2.9
o0 =t 3\ B og | (1, 1,4, (1, 5) @9)
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The special function H§31 (z) in the above equalities is the Fox H-function and some details regarding
this function can be found in [4,32, 33].
In the sequel, we list some properties of the functions G,(x, 1) and G(x, 7).

Lemma 2.1. [16] Letd € N, 0 < @ < 1, and 0 < s < 1. Then the functions G,(X,t) and G (X, 1)
in Egs (2.8) and (2.9) have the following properties.
(1) Gu(x,1) > 0, G¢(x,1) > 0.

a—-1 —(l-a
@) fuGax.Ddx = 1, [, Gy(x,0dx = o= (log )" . (3) 4D,V "G p(x. 1) = Ga(x,1).
Lemma 2.2. [16] Letd e N, 0 <a < 1,and 0 < s < 1. If u,(x) > 0 and u,(x) # 0, then we have

Gu(X, 1) x ug(x) > 0 and |G (X, 1) * (|| ey = Na(X)| L1 gey. Furthermore, when 1 <r < g < +oco and

+ =3 <min{1, 3}, it holds that

r

1t rT g
u%aﬁ*%@mWASC@gﬁ lita e, £ > a 2.10)

Lemma 2.3. [16] Letd e N, 0 < a < 1,and 0 < s < 1. Ifu,(x) > 0 and u,(x) # 0, then we
a-1

have G (X, 1) * uy(x) > 0 and ||G¢(X, 1) * ua(X)|| 1 ey = ﬁ (log é) la(X|| L1 ray. Furthermore, when

1 <r<qg<+coand % - %1 < min{1, 47“‘}, it holds that

a—]_ad(1_1

t 25 \r gq
H@@ﬁﬂ%ﬂ@msc@%ﬁ Nt e, £ > a @.11)

Lemma24. [16]Letd €N, 0 < a < 1,and 0 < s < 1. Assume uy,(x) € Co(R?). Then fort > a > 0,
we have G4(X, t) * u,(x) € Co(R?Y) and

caDg, [Gu(X, 1) x uy(x)] = =(=A) [Gu(X, 1) * ug(x)], t > a > 0.
And there exists a constant C > 0 such that
t -
-8 [Gax, ) * () ey < C (log =) ltalzsu > @ > 0.

For simplicity of representation, from now on, we denote G,(1) = G.(X,1), G¢(t) = G(x,1), and
SO on.

Lemma 2.5. [16]Letd € N,0<a<1,0<s<1,andT >a > 0. Let also f € Li((a, T), Co(R9))

with g > 1 and
! t d
o(1) = f G, (a—) «
p T T
Then we have
—(1-a) ! t dT
D00 = [ 6, (a2) s F
a T T
Furthermore, one has 6(t) € C([a, T], Co(R?)) provided that gac > 1.
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3. The mild solution and weak solution

In this part, we first define a mild solution of Eq (1.1) and then prove the local existence and
uniqueness of the mild solution in terms of the contraction mapping principle. Next, the definition
of a weak solution is introduced to Eq (1.1). We can also prove that the mild solution is just a weak
solution. Let us begin by introducing the definition of a mild solution to Eq (1.1).

Definition 3.1. Letd e N, O <a<y<1,0<s<1,p>1landT >a> 0. Let u, € Co(RY). Then a
mild solution u € C([a, T, Co(R?)) of Eq (1.1) is given by

u(t) = Go(1) * u, + f Gf( )*[HD A=) (|y|P~ lu)(T)]— t€la,T]. (3.1)

Theorem 3.1. Letd e N,O<a<y<1,0<s<1,p>1,andT > a > 0. Let u, € Co(R%). Then
there is a maximal time Tmay > a such that Eq (1.1) has a unique mild solution u € C([a, Tyax), Co(RY)),

where, either Ty = 00 0F Tmax < 00 and ||ullp=ar).1o®ey = 0 ast — T... Moreover, if u, > 0 and

u, # 0, then u(t) > 0 for any a < t < Ty Besides, if u, € L'(R?) for 1 < r < oo, then one has
u € C([a, Tmax), L' (RY)).

Proof. For given T > a > 0 and u, € Cy(RY), let
E.r = {u € C([a, T1, Co®) | lull o ary.comay < 2ltallpsces)

and
d(u,v) = max |[u(®) — v(O)llpoge), Yu,v € E,y.
tela,T]

Obviously, (E,r,d) is a complete metric space. By means of the fundamental solutions G,(¢) and
G (1), we define the following operator .# on the metric space (E,r,d),

FU)t) = Gall) % 1ty + f Gf( )*[HD A=(Jupr- 1u)(T)]— ueE.r.

It follows from Lemma 2.5 that .% (1) € C([a, T], Co(R%)).
We next show that .% : E, ;7 — E,r. Foru € E,7 and t € [a, T], by Definition 2.1 and Lemma 2.1,
we get

1.7 W) (|| Lo (ra)

! t d
<NGalt) * sl pmguey + f G, (a—) S DI @l S
a ’ LoRd) T

1 " ! i deT

_||ua||Lm(Rd>+m (tog2) " (1og =) " il
w 1 vy dr

=||uall Lo ray + mf; log; (log ) ||Ma||Lm(Rd)

2° AN 7+l : a—1 1—y
:||ua||LM(Rd>+m(log5) fo (1= D)l

AIMS Mathematics Volume 7, Issue 7, 12913-12934.
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2’2 —y) ( t)a—7+1
= allr> + 1 - a b

2 ||ua||Lm(Rd) T
Sl o ey + (

a—-y+1
N
TQ+a—y) 0og p [17A17% (Rd)

Choosing T > a sufficiently close to a such that
P T a—-y+1
B A T e
FrC+a-vy) ( %y e ”Lm(Rd)

then we obtain [|.7 ()| ~a.1).1owd) < 2ltallo®e and F (u) € E, 1, viz., the operator .% maps E, r into
itself.

We need to show that the operator .# is contractive on E, 7. For u,v € E,r and t € [a, T], one can
deduce that

1.7 (w)(t) — F V)l 1~ ge)

o . | [ {ioe3) " (o2 2)”

dwdr
X ) ) = O 0y
zpc(p) | T\% y+1
Sty acsi o g) Il = Moo

Taking T > a sufficiently close to a gives rise to

2PC(p) T\* 7! 1
(log =) llol <

TrQ+a-1y) 2’

which means [|.7 (u)(t) — ZF V)(Ollpo@ey < %Ilu — Vi~ ar).corey- This illustrates the operator .# is
contractive on E,7 and thus it has a fixed point u € E,r by the contraction mapping principle.
Moreover, using Gronwall inequality immediately knows the uniqueness of the mild solutions
to Eq (1.1) holds.

In view of the uniqueness, there is a maximal time 7'y,,x > a such that the solution of Eq (1.1) exists
on the interval [a, T.x ), Where

T1ax = sup {T > a|there is a mild solution u € C([a, T], Co(RY)) to (1.1)} < +o00.

Next, we show ||ull o (a.r1).1o®e) — o0 ast — T, provided that Ty, < oo. If T < oo and there is
M > 0 satisfying |[u(?)l|oge) < M for t € [a, Tinax), then we have for a < & <n < T,

l|ee(€) — M(U)||L°°(Rd)

d
<N GAE) = Gulm)] * ttalliwqey + f Gf( )*[HD o1

A ()6t oo e

AIMS Mathematics Volume 7, Issue 7, 12913-12934.
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MP 7 n a—1 T 1—y dT
SIGE) = Gutl il + s [ (toe ) (1og 2)

: T
+F(C2A:[py) ai (log 2)1—y min {(log g)a—l , (log 5)0—2 (log Q)

-
Mp TmaX - g
SIGE) = Gul] * tlhoe + s (08 72 | (e

) o] o] o)
M?(log Tas) 7 e
(log )

e+ DIQ2 )

TmaX 1_y ¢
+ CM? (log —) (log Q) ,
a &

SNGa(€) = Ga(m)] * |l ray +

which implies lim u(¢) exists in Co(RY).

=T max

Now we define lim u(?) = ur

_ max *
- Tmax

Lemma 2.5 yields that

Therefore one gets u € C([a, Tmax], Co(RY)). Furthermore, using

! t d
f Gz )+ WD (™ )15 € Ca, Tl Co®D).
“ T ’ T
For & > 0 and o > 0, consider a set

Eh,a’ = {l/t € C([TmaXa Tmax + h]a CO(Rd)) | M(Tmax) = UTpaxs d(” l/tdex) = }

equipped with N
du,v) = max oe(t) — v(O)l| o gy, YU, v € Epr.

Tmax >4 max

Then the metric space (Eh,m d) is complete.
On the space (E),, d), define an operator 2 as follows,

TmaX
D)D) =Glt) % g + f Gy ()« LD lu)(T)]_
. f Gyat) LD %, v € B
Tomax T T

It is easy to see that 2(v) € C([Tmax T’glax + h], Co(RY)) and 2(v)(Timax) = Ur,,,.
We first prove 2(v) € E;,, for v € E;, .. As a matter of fact, if # € [Tax, Timax + /], then

1200 — uz,, |l=@a
S”(;a(z‘) *Ug — G (Tmax) * ua”L""(Rd)

f G (az) LaD 0o s
Tmax

+

L>RY)

AIMS Mathematics Volume 7, Issue 7, 12913-12934.
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+

LTnlax [Gf (af_) -Gy (a Tr:-ax )] « [HD;,(T]_Y)(Wlp_lu)(T)]d%-

=il ey + 1allLo@ay + [[3]| oo Ra)-

L>@RY)

By taking sufficiently small /, we arrive at

(o

Willioray £ =5 IWsllpo@ey < =

Wl

W

In regard to ||J3|[ = ga), One has

dr
12l @y < -

! t o ~ B
f Gy (a—) [ uD ¢ (@) = lur,,, [ ur,,)]
TmaX T

Lo[RT)

+

t
t o _ dr
f Gf (a_) * [HDa,(Tl y)(luTmaxlp 1uTmaX)]_
Tmﬂx T T

Lo (RA)
1-y
Co (log ﬁ) » t\" o
<[—+ ”uTmax”Loo R4 log < P
a T+ 1DIre-vy) ) T, 3

for t € [Timax» Tmax + Al and h small enough. Therefore, there holds || 2(v)(t) — ur,, ll;~®e) < 0, i€,

d(2),ur,, ) < o fort € [Thax, Tmax + hl.

We next show that the operator 2 is contractive on Eh,(,. Assume that v,w € Eh,(r and t €

[T max> Tmax + A1), it follows that
12(0)(@) = W)l ey

<SPt T )
T(@2 = 5) WL T T 0,25 L (T Tonan 1), L2 (R)

! r\e! \\-7 dr
X (10g —) (10g —) v = Wz (7 T+ (R
Tonax T a T

1—

o oes) (o o ) (102 =) )
+ S .

“Tla+ DE@ —y) 7 7 Wmdliz@n) - {08 7 0] AW

In this case, for ¢ € [T, Tmax + /1], one may take very small 4 such that

N\ a
2C(p) (log ;) ( tlr I )p—l e 1) 1
Tla+ DEQ2 —y) 0 Witz 087 0] =5

which suggests the operator 2 is contractive on Ehﬂ and thus it has a fixed point v € E;w. In view of

V(Tmax) = c@(V)(Tmax) = M(Tmax)’ we set

_ {u(r), t € [a, Thax)»
u(t) =
V(t)’ t E [Tmax, Tmax + h]’

such that u(r) € C([a, Tmax + 1], Co(Rd)) and
(t) = Golt) % 1y + f Gy(az) [HD;,S‘”qﬁ(r)V*ﬁ)(r)]g,

AIMS Mathematics
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which means u(f) is indeed a mild solution of Eq (1.1). Recalling the definition of Ty, this yields a
contradiction.

The proof of the remainder of this theorem follows that of Theorem 3.2 in [16] and so is omitted.
The proof is thus complete. m|

In the following, we present the definition of a weak solution to Eq (1.1) and show that the mild
solution given by Definition 3.1 is a weak solution.

Definition 3.2. Lerd €N, 0<a<y<1,0<s<1,p>1,andT > a> 0. For givenu, € LY, (RY), a
Sfunction u is said to be a weak solution of Eq (1.1) ifu € L?((a, T), LLOC(R")) and
dr
f f D, (l |l u) @ + ug CHD,TSD) —dx
R4
, dr
= f f (u(=A)'¢ + ucuDfy @) —dx, (3.2)
R Ja t

for any test function ¢ € Ci;tl (R4 x [a, T)) satisfying supp ¢ cC R and ¢(-,T) = 0

Theorem 3.2. Letd e N, O <a <y <1,0<s< 1, p>1,and T > a > 0. If the initial value
U, € Co(RY), then the mild solution u € C([a, T], Co(R?)) of Eq (1.1) is also its weak solution.

Proof. Assume that u € C([a, T], Co(R%)) is a mild solution to Eq (1.1). Then Definition 3.1 gives
! t d
Uu—u, = Ga(t) * Uy — Ug + f Gf ((1—) * [HD;(TI_y)(lMlp_lu)]—T
a T ’ T
Use Lemma 2.5 to get
~(1-) (1-0) t t I 147
D41~ ) =D Gttty =) + [ Goal ) LD a0
p T : T

Therefore, for every ¢ € Ci’,l (RY x [a, T]) satisfying supp ¢ cC R? and ¢(-, T) = 0, there holds

f D, (u - u,)pdx = f HD T (Golt) * 1ty — ) pdx
Rd R? ,

! t
+ffGa( ) LD lu)]—sodX—11+Iz
R Ja T

For I;, an application of Lemma 2.4 leads to

1, = - f (~AY(Golt) * u)pdx + f HD " Galt) * ty — )Sipd. (3.3)
R4 R4

To estimate I,, weseth > 0,r € [a,T)and t+ h < T, then

L(t+ h)— L(t)
log(t + h) — log(?)

AIMS Mathematics Volume 7, Issue 7, 12913-12934.
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t+h
* )*[ D, (1 D(|ulP~ 1u)]—<,0(t+h x)dx
-

10g(l+h) log(?) df Ga (“

t+h 1-) Loyt
log(t+h) 10g(t)ffGa( T) [ #Dg 7 (lul”” M)] [90(l+h x) — ¢(t, x)]dx

t+h t (1o 1
+10g(t+h)—log(t) fRf [G( T ) a(aT)] [ D7 (lul” N go(t x)dx

2121 + 122 + 123.

Applying the mean value theorem yields that

liml,, = f D, (ulP ) pdx,
h—0 R ’

!
1im122:f fG( )*[ DL ) (5(pdx
h—0 Rd a T

and

! t d
lim I3 = — f f Gf(a—)*[HD;,‘,I‘V’(Iulp‘lu)]—T(—A)Ssodx.
Rd Ja T T

h—0

Consequently,

51, = f D20 (P ) i
d

+f D f”f Gy (a2 )+ LD~ 01 s
R4 T
- f 5 LD a1 -y
Rd
Combining (3.3) and (3.4), we obtain
dt r dt
f f #D, ua)(pdx—: f ((511+512)7
~(=p) . p-1 dr
u(—A)* godx— Da’t (|uf? u)gode
R4

f (Ll ua) CHD; T (,DdX—
which is the desired result and the proof is now ended.
4. Proof of main result

Proof of Theorem 1.1.
(1) We consider two cases: (i) l < p<p=1+ 1% i) l<p<p=1+ W.

(3.4)
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(i) Assumethat 1 < p<p =1+ 1% Let

w(x) = (f e v‘IZJrl"lzd)() e VEHE « e RY,
R4

and the function @ satisfy

N 1, 18 <1,
® € CX(R), q)(g):{() €2 0<d<I.

Thanks to Theorem 3.2, we may take ¢(x) = wX)D,(x) with ®,(x) = O(x|/n),n = 1,2,...,

1 m l+a—
and @, (t) = (l—kfgg((%) for t € [a,T], where m > max{2,”(;f“17)}. Now we set ¢(X,t) =

CHD;’}y(go 1(X)¢1(1)). From Definition 3.2 of the weak solution, one has

_ _ _ dr
f/ f Dy =y D,ITV(‘,DlSDz) + g cuDi 7 CHD:,TY(SDI‘-PZ)) —dx
Rl

fdf M( A’ CHD,T @2+ u cyD; TCHD T (<P1<P2)) 4.1)
R

Furthermore, it follows that

o dr
f f u’p1p2 + uap1 cuD, 7 ot 7902) —dx
R4 t
s 1-y 1+a-y dr
=1, (u(—A) 1 cuD, 1 2 + upy cuD, 1 902) TdX- 4.2)
R a

According to the inequality (—A)*w(x) < w(x) in [16] and the Lebesgue dominated convergence
theorem, we have with n — oo in (4.2),

- dr
ff u"a)goz—dx+ff uawCHDH“ z—dx
R4 R4

o dr
f f Uw CHDtT ©r + Uuw CHD Y0y ) —dx. (4.3)

Using Jensen’s inequality in (4.3) gives
T p T
dr dr
f (f uwdx) 902—+ff ”awcHD”“ Y0, —dx
a R4 t R4 Ja t
T
_ o dr
< f d f (uew cuDy 7 @2 + uw ey, ;" ) —dx. (4.4)
R a

Denoting f(t) = fRd u wdx, it is easy to see that f(z) > 0 and f(a) > 0. In view of inequality (4.4),
Holder inequality and Young’s inequality, we obtain

ff”(t)¢z(t)—+f f(@) cuD; 3" y9@(0%
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vamy d

f f@®) cnD;; 902(l)—+ f f@) cuD,; wr)—t
oy d
f f(t)<P2 <r>go2"<t>CHDtT¢2<r)—+ f f(t)soz (l‘)%p(f)CHDl ysﬂz(f)Tt

T
L ~ 2 d
<5 f fp(l)902(l)—+c f &7 (Dl o)

+CfT %()( D1+ay (t))pp| dr
; CH P2 .
Hence there holds

1 (7 dr T\~ = T\

- f POe0Z + Cfla) (log —) <C (log —) e (log —)

2 J, t a a
Then we get

py=1 py-pa-1
T =1 +a—=y T -1 +a—y
fa)<C (log 5) e (log 5) . 4.5)

If Eq (1.1) has a global solution, we know that f(a) = 0as 7 — o in (4.5)by 0 < a <7y < 1 and
p<l1+ %, which is inconsistent with f(a) > 0. Hence, the mild solution of Eq (1.1) blows up in
finite time.

(ii) Suppose that | < p<p =1+ W. Fort € [a,T] with T > a > 0, we take

B Z -5 = _[1_ M 5
e (-

with m > max{2, W} and @(x,1) = cyD, ;7 (01 (X)@a(t)).
Let u be a mild solution of Eq (1.1), then Theorem 3.2 implies

o dr
f f w1y + uapr cuD, 7 ' 7<P2) de

_ vy 1\ dt
- [ f (8701 cuDl7 i + s cuDly ) L (4.6)
R a
Note that the fact
‘ . Ty U+e=n 1 1
A'erenDT e <Cillog ) eel. @7
and
1+a— T e 1oy

¢rcuD,; T < Co (log ;) 1Py (4.8)

where the positive constants C; and C, are independent of 7.
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According to (4.6)—(4.8), together with Young’s inequality and Holder inequality, it holds that

dr
f f u’ Q10 + ugp CHDHQ 7 ) —dx
R‘i

T\~ (+a-n+(1+5H T dr »
<C (log ) (f f u”cplcpg—dx)
R4

T 1+(5§i P(I;rﬂl}’)
<C(p) (log ) f d f uf’solsoz—dx 4.9)
R
As a result,
TV ™ T\ 5
Clay)log © ) f i < C(p) (log - , @.10)
Rl
1.e.,
T l+a— y+ad p(ll:ralv)
f waspdx < Clay, ) log - (4.11)
R4

2s(1+a—y)
ad

then fRd uspdx =0as T — oo, thatis u, = 0, which makes a contradlctlon with the assumption u, # 0.
Therefore, blowup of the mild solution u of Eq (1.1) occurs in finite time.

(2) Based on the fixed point principle, we demonstrate the required result by constructing the global
solution of Eq (1.1). Firstly, the condition p > 1 + M implies that

ad(p—1)
2s(pa = py + 1),
where (pa — py + 1), = max{0, pa py+ 1} Ifd < m one has p > p = 1 + 210 apd if

I ad
d> M ,onegets p>p=1+" —Z. In either case, we obtain

ad(p-1)

The condition 1 < p < 1+ indicates 1+a—y+%¢ p(”“ Y < 0. If Eq (1.1) has a global solution,

> 1, (4.12)

(4.13)
2sp(l+a—-y—(p—Da).
In addition, by p > 1 + =2 > -, it follows that
dip-1 dip-1
- __ adlp-1D ’ (4.14)
2sp 2s(pl@=7y) + 1),
and
dip—-1 dip—-1
=D _ adp ~ 1) . (4.15)
2sp 2spQRa+1—-vy—ap),
Hence, taking (4.12)—(4.15) into account, we can choose g > p such that
1 - 1
ta—y 1 _ad o (4.16)
p—1 p 2sq p-1
and
ey .04 @ (4.17)
p—1 2sq p-1
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Let
d 1 1 - d
p=2 (———) remy a4 4.18)
2s q p—1 2sq
Then (4.16) gives
O0<pB<l. (4.19)
If the initial value u, satisfies
sup (log ) 1Go(6) * tgllzaea, = 0, (4.20)
>a
then 9 < +oo by (4.18) and (2.10) provided that u, € L” (R¢) with p* %
Next we use the contractive mapping principle to obtain result. To this end, we denote
t\8
E = {u € L™((a, o), L'R") | |lullp = sup (10g ) lletll paray < +00}
t>a
and
! t | dr
W(W)(1) = Ga(t) * g + f G, (a—) « LD w1, Vu € E.
a T ’ T
Define
EK: {ueElllulle < K,K>0}.
Byg> pandg > d(” D one gets 7 3 < min{1, 475}. Thus, for any u,v € Ex and t > a, it follows that
t
(108 2 1000 ~ ¥ 0) Ol
A t d
< (log —) f G, (a—) c D@ — vl L
a a T ’ Lq(Rd) T
C I (N NS (T T\ dw dr
—_ — _ P _ 17
S1“(1 -) (log a) L (log T) L (log w) l ”L"(R") T
c 0P (T e
lo )
F(l—y)( %84 ) f( &7
dwdr
e e [ b
F(l—y) 8 o8 p ng Oga wru Vi
CKP~ 1 1
= f T T e e f (1 —w) ?wPPdwllu — vl
I'(l-7y)
ad
ckrt D= 57TC—y - phra —ppra-y,
u—"v\\e
_ ad(p-1)
F(l NIQ+a—-pB-y-— 2‘;1 y TCQ-y-pB
T(a - “G=T(1 - pp)
=CK"™! 1 ool = Vile. (4.21)
FQ+a-pB-v-5)

2sq
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By taking K small enough such that

| Ta-"2rd-pp)
CK? <=

FQ+a—-pp-y—-4t) 2

which yields |[¥(u) — ¥()||z < Lllu — vllz by Eq (4.21).
A similar calculation as (4.21) results in
T(a - “GE=D0(1 - pp)

FQ+a—pB—y- "4t

(4.22)

t\8
(log 5) ”T(M)(l)”Lq(Rd) <9+ CK?

Choose sufficiently small ¢ and K such that

T(a - “4ZT(1 - pp)

<
FQ+a-pB-y-*3)

3+ CK?

This implies W(u) € Ex and thus W has a fixed point u € Ex by the contractive mapping principle.
Finally, We need to prove u € C([a, o), Co(R?)). For a T sufficiently close to a, let

a<t<T

Exr = {uem(a 1), /@) | sup (log - ) o <K}

As demonstrated before, it is known that there is a unique solution u on Egx7. It follows from
Theorem 3.1 and the initial value u, € Cy(R?) N LI(RY) that there exists a unique solution u €
C([a,T],Co(RY)) N C([a, T, LY(RY)) for T sufficiently close to a. Hence, for T sufficiently close to

a, one has sup (log £ / [te(D)|aray < K. This means that u = u for ¢ € [a, T] from the uniqueness of
p \log (R) q

a<t<T

solution and thus u € C([a, T], Co(R)) N C([a, T], L1(RY)).
Our purpose is to prove u € C([a, ), Co(R?)). In fact, for ¢ > T, it holds that

U= Go(t) * uy = f Gf( ) [ D¢ y>ul’(r)]—
faTGf( t)*[HD ( 7>up(r)]—+fo( ) [ D¢ ”u!’(r)]—
=1 + L.
Using the fact u € C([a, T], Co(RY)), one obtains
I, € C([T, ), Co(R%)) N C([T, o), L1(RY)).

For any T > T, it can be easily find that w» € L ((T,T),L?(R%) and zD,; ’u’ €
L>((T,T), LY?(R%)). On the other hand, the condition ¢ > d(’;_l) indicates that we may choose r > ¢

such that 5 d E_ —) < 1. As what we have proved in Lemma 2.5, it is obvious that I, € C([T, T] L' (RY)).
By the arbltrarlness of T, we see that I, € C([T, o0), L"(R?)) and thus u € C([T, o), L'(R)).

AIMS Mathematics Volume 7, Issue 7, 12913-12934.



12929

Let r = gA" and A > 1 satisfy

d 1
Sl ctin=12...,
25 \gA~t g
then u € C([T, ), LI (R?). After finite steps, one has ﬁ < 2. In other words, we show u €

C([a, ), Co(R?)). This concludes the proof of the theorem.

Remark 4.1. It is worth noticing that, according to Theorem 1.1, the Fujita critical exponent to

X ~ 1— 2s(1+a—y)
Eq (1.1) is the number p = max{l + 77,1 + —;d =)

Remark 4.2. In the Eq (1.1), we consider the case 0 < @ < y < 1 and prove the main result, i.e.,
Theorem 1.1. If y > awithO < @ < 1 and 0 <y < 1, then it is easy to verify that Theorems 3.1 and 3.2
are still valid provided that a mild solution and a weak solution are defined as Definitions 3.1 and 3.2.
However, compared with Theorem 1.1, we see that the main conclusions are very different. In fact, we
can derive the following result whose proof is similar to that of Theorem 1.1 or can also refer to the
proof of Theorem 1 in [34].

Theorem4.1. Letd e N,0<a<1,0<y<1,y<a,0<s<1,andp > 1. Assume that u, € Co(R%)
and u, > 0 with u, £ 0.

(L If1 <ps1—a:max{§,1+
time.

(2) If p > p and |lull.* e is small enough with p* = ng(f;_li),

2s(1+a—y)

m}, then the mild solution of Eq (1.1) will blow up in finite

then Eq (1.1) exists global solution.

Remark 4.3. From Theorem 4.1, we remark that the Fujita critical exponent is p = max{-,1 +

1
,y b
2s(1+a—y)

m}whenyﬁaffor0<a<1and0§7<1.

5. Numerical simulations

In this section, we show the finite time blow-up of the solution to Eq (1.1) by numerical simulation.
For this purpose, we have to approximate the Caputo-Hadamard derivative, fractional Laplacian and
Hadamard fractional integral in Eq (1.1), respectively. We shall use formulaes (3.2) and (3.3) in [35]
to discretize the Caputo-Hadamard derivative of order @ € (0, 1) and apply formula (2.9) in [36] to
approximate the fractional Laplacian of order s € (0,1). For the right sided Hadamard fractional
integral of order 1 —y (y € (0, 1)) in Eq (1.1), we present the following discrete scheme.

Leta=1t <t <...<t <...<ty =T be apartition of the interval [a, T] with N € N and some
positive number 7 > a. Then the Hadamard fractional integral with order 1 — y(y € (0, 1)) can be
approximated by, fort =#,,1 <k <N,

(1 1 li B\ dr
D2 50l = [ (10 %) en T
1 < fff ( B\ dr

- log %) " gm

r(l - )/) ; tj-1 g T T

1 < f’f ( e\ dr
~ lo —) (1)
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1 k f 1—y f 1-y
“Ta—y) ; [(108 t,__l) - (log ;) ]g(lj—l)

J
k
= Z birg(tj-1),
=1

Silloes) () |
b, = log — —[log — .
k F(Z - ’}/) |:( g tj—l g tj

Based on these results, we obtain a numerical scheme to Eq (1.1). For simplicity, we now take
d=1,a=1,p=2and u, = 10 in Eq (1.1). Figure 1 depicts the curves of the solution to Eq (1.1)
when the parameters @ and s choose different values and y = 0.8, which displays the finite time blow-
up of solution of Eq (1.1) and thus shows the effectiveness of the results in Theorem 1.1. Similarly,

Figure 2 presents the curves of the solution to Eq (1.1) in the case y < « and illustrates the validity of
the results given by Theorem 4.1.

where

25 x10%% ; ; ; 12 x107%
10
oL
sl
_815¢ 2
& £ °
= ar =
al
05F
oL
0 0 ‘ ‘ ‘ ‘ ‘ ‘
1 15 2 25 3 1 15 2 25 3 35 4 45 5
t t
@a=03,5s=04 b)a=03,5s=0.38
292 28
15 x10 55 x10 4
oL
100
:8 :8 15+
= =
& E
= = 1r
sl
05F
0 ‘ 0 ‘ ‘ ‘ :
1 15 2 25 1 15 2 25 3 35
t t
a=07s5=04 dDa=07s5s=0.8

Figure 1. Solution curves for Eq (1.1) with y = 0.8.
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Figure 2. Solution curves for Eq (1.1) with y = 0.3.

6. Conclusions

In this paper, we study the blow-up and global existence of solution of the Cauchy problem to
time-space fractional partial differential Eq (1.1) with nonlinear memory. A mild solution and a weak
solution are introduced to Eq (1.1) and the mild solution is actually shown to be the weak solution. We
next prove the local existence and uniqueness of the mild solution of Eq (1.1) by using the fixed point
argument. Finally, the finite time blow-up and global solution of Eq (1.1) are established and the Fujita
critical exponent is also determined, where the blowing-up character of the solution in a finite time is

verified by numerical simulations.
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