Research article

On the distribution of $ k $-full lattice points in $ \mathbb{Z}^2 $

  • Received: 13 January 2022 Revised: 23 February 2022 Accepted: 09 March 2022 Published: 29 March 2022
  • MSC : 60G50, 11H06, 11N37

  • Let $ \mathbb{Z}^2 $ be the two-dimensional integer lattice. For an integer $ k\geq 2 $, we say a non-zero lattice point in $ \mathbb{Z}^2 $ is $ k $-full if the greatest common divisor of its coordinates is a $ k $-full number. In this paper, we first prove that the density of $ k $-full lattice points in $ \mathbb{Z}^2 $ is $ c_k = \prod_{p}(1-p^{-2}+p^{-2k}) $, where the product runs over all primes. Then we show that the density of $ k $-full lattice points on a path of an $ \alpha $-random walk in $ \mathbb{Z}^2 $ is almost surely $ c_k $, which is independent on $ \alpha $.

    Citation: Shunqi Ma. On the distribution of $ k $-full lattice points in $ \mathbb{Z}^2 $[J]. AIMS Mathematics, 2022, 7(6): 10596-10608. doi: 10.3934/math.2022591

    Related Papers:

  • Let $ \mathbb{Z}^2 $ be the two-dimensional integer lattice. For an integer $ k\geq 2 $, we say a non-zero lattice point in $ \mathbb{Z}^2 $ is $ k $-full if the greatest common divisor of its coordinates is a $ k $-full number. In this paper, we first prove that the density of $ k $-full lattice points in $ \mathbb{Z}^2 $ is $ c_k = \prod_{p}(1-p^{-2}+p^{-2k}) $, where the product runs over all primes. Then we show that the density of $ k $-full lattice points on a path of an $ \alpha $-random walk in $ \mathbb{Z}^2 $ is almost surely $ c_k $, which is independent on $ \alpha $.



    加载中


    [1] P. T. Bateman, E. Grosswald, On a theorem of Erdős and Szekeres, Illinois J. Math., 2 (1958), 88–98. https://doi.org/10.1215/ijm/1255380836 doi: 10.1215/ijm/1255380836
    [2] M. Baake, R. V. Moody, P. Pleasants, Diffraction from visible lattice points and $k$-th power free integers, Discrete Math., 221 (2000), 3–42. https://doi.org/10.1016/S0012-365X(99)00384-2 doi: 10.1016/S0012-365X(99)00384-2
    [3] J. Cilleruelo, J. L. Fernández, P. Fernández, Visible lattice points in random walks, Eur. J. Combin., 75 (2019), 92–112. https://doi.org/10.1016/j.ejc.2018.08.004 doi: 10.1016/j.ejc.2018.08.004
    [4] R. Durrett, Probability. Theory and Examples, fourth ed., Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2010.
    [5] P. Erdős, G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math., (Szeged), 7 (1935), 95–102.
    [6] C. Huck, M. Baake, Dynamical properties of $k$-free lattice points, Acta Phys. Pol. A, 126 (2014), 482–485. https://doi.org/10.12693/APhysPolA.126.482 doi: 10.12693/APhysPolA.126.482
    [7] H. Iwaniec, E. Kowalski, Analytic Number Theory, vol. 53. Colloquium Publications, American Mathematical Society, Providence, 2004. https://doi.org/10.1090/coll/053
    [8] E. Kr$\mathop {\rm{a}}\limits^{''}$tzel, Zahlen k-ter Art, Am. J. Math., 44 (1972), 309–328. https://doi.org/10.2307/2373607 doi: 10.2307/2373607
    [9] E. Kr$\mathop {\rm{a}}\limits^{''}$tzel, Divisor problems and powerful numbers, Math. Nachr., 114 (1983), 97–104. https://doi.org/10.1002/mana.19831140107 doi: 10.1002/mana.19831140107
    [10] P. Pleasants, C. Huck, Entropy and diffraction of the $k$-free points in $n$-dimensional lattices, Discrete Comput. Geom., 50 (2013), 39–68. https://doi.org/10.1007/s00454-013-9516-y doi: 10.1007/s00454-013-9516-y
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1459) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog