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Abstract: Let Z2 be the two-dimensional integer lattice. For an integer k ≥ 2, we say a non-zero
lattice point in Z2 is k-full if the greatest common divisor of its coordinates is a k-full number. In this
paper, we first prove that the density of k-full lattice points in Z2 is ck =

∏
p(1 − p−2 + p−2k), where

the product runs over all primes. Then we show that the density of k-full lattice points on a path of an
α-random walk in Z2 is almost surely ck, which is independent on α.
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1. Introduction

Let k ≥ 2 be a fixed integer. In Z, we say an integer n with |n| > 1 is a k-full number if for any prime
p | n we have that pk | n. Integers ±1 are also considered to be k-full numbers. Particularly, 2-full
numbers are said to be square-full. For x ≥ 2, let Nk(x) be the number of k-full numbers not exceeding
x. Erdős and Szekeres [5] showed that

Nk(x) =

2k−1∑
i=k

ci,kx
1
i + O(xθk+ε),

holds for θk ≤ 1/(k + 1) and any ε > 0. Here ci,k are constants, which can be explicitly computed. This
result has been improved by many other authors. For example, see Bateman and Grosswald [1] and
Kra̋tzel [8, 9].

In the two-dimensional lattice Z2, we say a non-zero lattice point (m, n) is k-full if and only if
gcd(m, n) is a k-full number, where gcd(∗, ∗) is the greatest common divisor function. Particularly,
2-full lattice points in Z2 are said to be square-full. For example, lattice points (2, 3) and (12, 20) are
square-full, but point (12, 21) is not.
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k-full lattice points are natural analogues of k-free lattice points. We say an non-zero integer n is a
k-free number if it is not divisible by any k-th (k ≥ 1) power of primes. A non-zero lattice point (m, n)
in Z2 is said to be k-free if gcd(m, n) is a k-free number. From [10], we see that the density of k-free
lattice points in Z2 is 1/ζ(2k). We refer to [2, 6] for more work on k-free lattice points from different
aspects.

Our first result gives the density of k-full lattice points in Z2.

Theorem 1.1. For k ≥ 2, let S k(x) be the number of k-full lattice points in the square area [1, x]×[1, x].
Then for x ≥ 2 we have that

S k(x) = ckx2 + O(x log2 x),

where

ck =
∏

p

(
1 −

1
p2 +

1
p2k

)
(1.1)

with the product running over all primes and the implied O-constant does not depend on k.

In particular, for k = 2, by Theorem 1.1 and the Euler product of ζ(s), which is the Riemann zeta
function, we obtain that the density of square-full lattice points in Z2 is

c2 =
∏

p

(
1 −

1
p2 +

1
p4

)
= ζ(4)ζ(6)ζ−1(2)ζ−1(12) ≈ 0.66922.

We also investigate k-full lattice points in {0, 1, 2, · · · }2 from the viewpoint of random walks. For
0 < α < 1, an α-random walk is defined by

Pi+1 = Pi +

(1, 0), with probability α,
(0, 1), with probability 1 − α

for i = 0, 1, 2, · · · , where Pi = (xi, yi) is the coordinate of the α-random walker at the i-th step and
P0 = (0, 0). In 2019, Cilleruelo, Fernández and Fernández [3] considered visible lattice points in α-
random walks in Z2. They proved that (see Theorem A, [3]) the density of visible lattice points on a
path of an α-random walker is almost surely 1/ζ(2).

Our second result gives the density of k-full lattice points on a path of an α-random walker. Before
stating the result, we introduce some notations first. For an α-random walk, define a sequence of
random variables {Wi}i∈N by

Wi =

1, Pi is k−full,
0, otherwise.

For any n ≥ 1, define a random variable S k,α(n) by

S k,α(n) =
W1 + W2 + · · · + Wn

n
,

then S k,α(n) indicates the proportion of k-full lattice points in the first n steps of an α-random walker.
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Theorem 1.2. For any α ∈ (0, 1), we have that

lim
n→+∞

S k,α(n) = ck

almost surely, where ck is the same as in Theorem 1.1.

Note that the density ck in Theorem 1.2 is independent on α and coincides with the density of k-full
lattice points in Z2.

Notations. As usual, for real functions f and g, we use the expressions f = O(g) and f � g to mean
| f | ≤ Cg for a constant C > 0. When this constant C depends on some parameter α, we write f �α g
and f = Oα(g). We use R, Z and N to denote the sets of all real numbers, integers and positive integers,
respectively. Moreover, we use P, E and V to denote taking probability, expectation and variance,
respectively. The symbol

∏
p always means taking product over all primes.

2. Preliminaries

In the present section, we apply elementary methods to give some preliminary results with the aim
of proving our Theorems.

2.1. Divisor functions

We give some bounds for sums involving divisor functions, which would be used later. For l ≥ 2,
let

τl(n) :=
∑

n=d1d2···dl

1

be the l-dimensional divisor function. Particularly, we always write τ(n) = τ2(n). By (1.80) in [7], we
have that ∑

1≤i≤n

τ3(i) � n log2 n (2.1)

and ∑
1≤i≤n

τ2
3(i) � n log8 n (2.2)

for n ≥ 2. By bound (2.1) and partial summation, we have the following lemma.

Lemma 2.1. For any integer n ≥ 2, we have that∑
1≤i< j≤n

τ3(i)τ3( j)
√

i
= O

(
n3/2 log4 n

)
and

∑
1≤i< j≤n

τ3( j)
√

j − i
= O

(
n3/2 log2 n

)
.

Proof. To prove the first equality, we write that∑
1≤i< j≤n

τ3(i)τ3( j)
√

i
=

∑
1< j≤n

τ3( j)
∑
1≤i< j

τ3(i)
√

i
.
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Applying partial summation to the sum over i, we obtain that∑
1≤i< j≤n

τ3( j)τ3(i)
√

i
� n1/2 log2 n

∑
1< j≤n

τ3( j) � n3/2 log4 n,

where we have used (2.1).
To prove the second equality, we write that∑

1≤i< j≤n

τ3( j)
√

j − i
=

∑
1< j≤n

τ3( j)
∑
1≤i< j

1
√

j − i
.

Note that
∑

1≤i< j
(
j − i

)−1/2
�
√

j, then we have that∑
1≤i< j≤n

τ3( j)
√

j − i
�
√

n
∑

1< j≤n

τ3( j) � n3/2 log2 n,

where we have used (2.1) again. �

2.2. Two arithmetic functions

Denote the characteristic function of k-full numbers by

hk(n) =

1, n is k−full,
0, otherwise.

It is obvious that hk(n) is multiplicative and

hk(pm) =

1, m ≥ k

0, otherwise,
(2.3)

for any prime power pm. For k ≥ 2, define

gk(n) :=
∑
rd=n

µ(r)hk(d), (2.4)

where µ is the Möbius function. Obviously, for n ≥ 1 we have that

|gk(n)| ≤ τ(n). (2.5)

Note that gk(n) is multiplicative and by (2.3), we have that

gk(pm) =


−1, m = 1,
1, m = k,

0, otherwise

for any prime power pm. It follows that
∞∑

n=1

gk(n)
n2 =

∏
p

(
1 −

1
p2 +

1
p2k

)
, (2.6)

where the symbol
∏

p means taking product over all primes.
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Lemma 2.2. For fixed integer k ≥ 2 and any x ≥ 2, we have that∑
n≤x

gk(n)
n2 =

∏
p

(
1 −

1
p2 +

1
p2k

)
+ O

(
x−1 log x

)
,

where
∏

p means taking product over all primes.

Proof. Extending the range of the sum over n, we have that

∑
n≤x

gk(n)
n2 =

∞∑
n=1

gk(n)
n2 −

∑
n>x

gk(n)
n2 .

Using bound (2.5), we have that ∑
n>x

gk(n)
n2 �

∑
n>x

τ(n)
n2 � x−1 log x.

where we have used the asymptotic formula (see (1.75) in [7])∑
n≤x

τ(n) = x log x + O(x) (2.7)

and partial summation. Hence we have that

∑
n≤x

gk(n)
n2 =

∞∑
n=1

gk(n)
n2 + O

(
x−1 log x

)
.

This together with (2.6) gives our desired result. �

For k ≥ 2, define

fk(n) =
∑
rd|n

µ(r)hk(d)
rd

. (2.8)

Obviously, for n ≥ 1 we have that

| fk(n)| ≤ τ3(n). (2.9)

Lemma 2.3. For fixed integer k ≥ 2 and any x ≥ 2, we have that∑
1≤n≤x

fk(n) = x
∏

p

(
1 −

1
p2 +

1
p2k

)
+ O(log2 x).

Proof. In (2.8), let rd = w, then we have that

fk(n) =
∑
w|n

1
w

∑
rd=w

µ(r)hk(d) =
∑
w|n

gk(w)
w

. (2.10)
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It follows that ∑
1≤n≤x

fk(n) =
∑

1≤n≤x

∑
w|n

gk(w)
w

=
∑
w≤x

gk(w)
w

∑
1≤n≤x

n≡0 mod w

1,

where we have changed the order of summations. Further, we have that∑
1≤n≤x

fk(n) =
∑
w≤x

gk(w)
w

( x
w

+ O(1)
)

= x
∑
w≤x

gk(w)
w2 + O

(∑
w≤x

|gk(w)|
w

)
.

Extending the range of the sum over w, we obtain

∑
1≤n≤x

fk(n) = x
∞∑

w=1

gk(w)
w2 + O

(
x
∑
w>x

|gk(w)|
w2

)
+ O

(∑
w≤x

|gk(w)|
w

)
.

Using (2.5), (2.7) and partial summation to estimate the O-terms, we obtain

∑
1≤n≤x

fk(n) = x
∞∑

w=1

gk(w)
w2 + O(log2 x).

This together with (2.6) gives our desired result. �

2.3. Tools from probability and number theory

We need the following second moment method from probability.

Lemma 2.4 (Lemma 2.5, [3]). For a sequence of uniformly bounded random variables (Wi)i≥1, let
S n = (W1 + · · · + Wn)/n. If the expectation E(S n) and the variance V(S n) of S n satisfy

lim
n→∞
E(S n) = µ

and
V(S n) �δ n−δ

for some constant δ > 0 and any n ≥ 1, then we have that

lim
n→∞

S n = µ

almost surely.

We also need the following number theoretical result.

Lemma 2.5 (Lemma 2.1, [3]). For any 0 < α < 1 and integers n ≥ 1, 1 ≤ d ≤ n and
r ∈ {0, 1, . . . , d − 1}, there holds ∑

l≡r mod d

(
n
l

)
αl(1 − α)n−l =

1
d

+ Oα

( 1
√

n

)
,

where the implied constant depends on α.
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For brevity, we denote

Cα(n, s) :=
(
n
s

)
αs(1 − α)n−s. (2.11)

For integer k ≥ 2, let

Pk,α(a, b, n) :=
∑

0≤m≤n
gcd(m+a,b) is k−full

Cα(n,m), (2.12)

where a, b, n are integers with b , 0 and n ≥ 1. Then we have the following result.

Lemma 2.6. For 0 < α < 1 and any integers a, b, n with b , 0, n ≥ 1, we have that

Pk,α(a, b, n) = fk(b) + Oα

(τ3(b)
√

n

)
,

where fk is defined by (2.8) and the implied O-constant depends only on α.

Proof. By (2.12), we have that

Pk,α(a, b, n) =
∑
d|b

hk(d)
∑

0≤m≤n
gcd(m+a,b)=d

Cα(n,m). (2.13)

For simplicity, let

F = Fα(n, a, b, d) :=
∑

0≤m≤n
gcd(m+a,b)=d

Cα(n,m).

For d | b, we have that

F =
∑

0≤m≤n,d|(m+a)
gcd((m+a)/d,b/d)=1

Cα(n,m).

Using the formula

∑
r|n

µ(r) =

1, n = 1,
0, otherwise,

(2.14)

and changing the order of summations, for d | b, we obtain that

F =
∑

0≤m≤n
d|(m+a)

Cα(n,m)
∑

r|gcd((m+a)/d,b/d)

µ(r)

=
∑
rd|b

µ(r)
∑

0≤m≤n
m≡−a mod rd

Cα(n,m),
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where µ is the Möbius function. Moreover, we write

F = F1 + F2, (2.15)

where

F1 =
∑
rd≤n
rd|b

µ(r)
∑

0≤m≤n
m≡−a mod rd

Cα(n,m) and F2 =
∑
rd>n
rd|b

µ(r)
∑

0≤m≤n
m≡−a mod rd

Cα(n,m).

We first consider the sum F1, applying Lemma 2.5 to the sum over m, we obtain that

F1 =
∑
rd≤n
rd|b

µ(r)
rd

+ Oα

( 1
√

n

∑
rd≤n
rd|b

1
)

(2.16)

For F2, since rd > n, then the sum over m in F2 consists of at most one term. Estimating this term by
the local central limit theorem (see Theorem 3.5.2, [4])

max
0≤l≤n

(
n
l

)
αl(1 − α)n−l = Oα

( 1
√

n

)
,

we obtain that

F2 �
1
√

n

∑
rd>n
rd|b

1 (2.17)

By (2.15)-(2.17), we have that

F =
∑
rd≤n
rd|b

µ(r)
rd

+ Oα

( 1
√

n

∑
rd≤n
rd|b

1
)

+ Oα

( 1
√

n

∑
rd>n
rd|b

1
)

=
∑
rd≤n
rd|b

µ(r)
rd

+ Oα

(τ(b/d)
√

n

)
.

Extending the range of the sums over r and d, we have that

F =
∑
rd|b

µ(r)
rd
−

∑
rd>n
rd|b

µ(r)
rd

+ Oα

(τ(b/d)
√

n

)
=

∑
rd|b

µ(r)
rd

+ Oα

(τ(b/d)
√

n

)
, (2.18)

where we have used ∑
rd>n
rd|b

µ(r)
rd
�

τ(b/d)
n

�
τ(b/d)
√

n
.

Inserting (2.18) into (2.13), we have that

Pk,α(a, b, n) =
∑
d|b

hk(d)
(∑

rd|b

µ(r)
rd

+ Oα

(τ(b/d)
√

n

))
.

The contribution of the O-term to Pk,α is

�α

1
√

n

∑
d|b

τ(b/d) =
τ3(b)
√

n
.

Hence, we have that

Pk,α(a, b, n) = fk(b) + Oα

(τ3(b)
√

n

)
,

where fk(b) is given by (2.8). This completes our proof. �
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3. Proof of Theorem 1.1

Given Lemma 2.2, the proof of the theorem is straightforward. By the definition of the k-full lattice
points, we have that

S k(x) =
∑

m,n≤x
gcd(m,n) is k−full

1.

It follows that

S k(x) =
∑
d≤x

hk(d)Ad(x), (3.1)

where
Ad(x) :=

∑
m,n≤x

gcd(m,n)=d

1.

By the definition ofAd(x) and applying the formula (2.14), we have that

Ad(x) =
∑

m,n≤x;d|m,d|n
gcd(m/d,n/d)=1

1 =
∑

m,n≤x
d|m,d|n

∑
r|gcd(m/d,n/d)

µ(r),

where µ is the Möbius function. Changing the order of summations, we obtain

Ad(x) =
∑

m,n≤x
d|m,d|n

∑
r|(m/d)
r|(n/d)

µ(r) =
∑
r≤ x

d

µ(r)
∑

m,n≤x
m≡ mod 0(rd)
n≡ mod 0(rd)

1.

It follows that

Ad(x) =
∑

r≤x/d

µ(r)
( x
rd

+ O(1)
)2

(3.2)

= x2
∑

r≤x/d

µ(r)
(rd)2 + O

( x
d

∑
r≤x/d

1
r

)
.

Inserting (3.2) into (3.1), we have that

S k(x) = x2
∑
d≤x

hk(d)
∑
r≤ x

d

µ(r)
(rd)2 + O

(∑
d≤x

x
d

∑
r≤x/d

1
r

)
= x2

∑
rd≤x

µ(r)hk(d)
(rd)2 + O

(
x log2 x

)
,

where we have used partial summation to estimate the O-term. Let rd = n, we have that

S k(x) = x2
∑
n≤x

1
n2

∑
rd=n

µ(r)hk(d) + O
(
x log2 x

)
(3.3)

= x2
∑
n≤x

gk(n)
n2 + O

(
x log2 x

)
,

where gk(n) is defined by (2.4). From Lemma 2.2 and (3.3), we obtain our desired result.
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4. Proof of Theorem 1.2

We first compute the expectation E(S n) and prove the following result.

Proposition 4.1. Let 0 < α < 1 and integer k ≥ 2 be fixed. Then for n ≥ 2, we have that

E(S n) =
∏

p

(
1 −

1
p2 +

1
p2k

)
+ Oα

(
n−1/2 log2 n

)
,

where the product runs over all primes and the implied O-constant depends only on α.

Proof. By the linearity of expectation and the definition of Wi, we note that

E(S n) =
1
n

∑
1≤i≤n

E(Wi) =
1
n

∑
1≤i≤n

P(Pi is k − full), (4.1)

where Pi = (xi, yi) is the coordinate of the α-random walker at the i-th step. Observe that xi + yi = i,
thus we can write Pi = (l, i − l) for some l = 0, 1, . . . , i. The probability that Pi = (l, i − l) is

P
(
Pi = (l, i − l)

)
= Cα(i, l),

where the function Cα(i, l) is given by (2.11). Since a lattice point Pi is k-full if and only if gcd(l, i− l) =

gcd(l, i) = d, where d is k-full, we infer that

P(Pi is k − full) =
∑
0≤l≤i

gcd(l,i) is k−full

Cα(i, l)

for any 1 ≤ i ≤ n. Applying Lemma 2.6 to the sum over l, we have that

P(Pi is k − full) = fk(i) + Oα

(τ3(i)
√

i

)
, (4.2)

where fk is given by (2.8). Hence from (4.1) and (4.2), we obtain

E(S n) =
1
n

∑
1≤i≤n

fk(i) + Oα

(1
n

∑
1≤i≤n

τ3(i)
√

i

)
.

Using bound (2.1) and partial summation to estimate the O-term, we obtain

E(S n) =
1
n

∑
1≤i≤n

fk(i) + Oα(n−1/2 log2 n). (4.3)

This together with Lemma 2.3 yields Proposition 4.1. �

Now we estimate the variance of S n.

Proposition 4.2. Let 0 < α < 1 and integer k ≥ 2 be fixed. Then for n ≥ 2, we have that

V(S n) = Oα(n−1/2 log4 n),

where the implied O-constant depends only on α.
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Proof. By the definition of S n, we have that

V(S n) =
1
n2

∑
1≤i≤n

E(Wi
2) +

2
n2

∑
1≤i< j≤n

E(WiW j) −
1
n2E

2
( ∑

1≤i≤n

Wi

)
. (4.4)

Firstly, by the definition of Wi, we have that∑
1≤i≤n

E(Wi
2) =

∑
1≤i≤n

E(Wi) =
∑

1≤i≤n

P(Wi) = O(n). (4.5)

Secondly, for the third term on the right hand side of (4.4), by the definition of S n and (4.3), we
obtain

E2
( ∑

1≤i≤n

Wi

)
=

( ∑
1≤i≤n

fk(i)
)2

+ O(n3/2 log4 n), (4.6)

where we have used (2.9) and (2.1) to obtain the O-term in the above.
Thirdly, we deal with the second term on the right hand side of (4.4). For 1 ≤ i < j ≤ n, let Pi and

P j be the coordinates of the i-th and j-th steps of a path of the α-random walk, respectively. Here, we
remark that P j depends on Pi. By the definition of Wi, we have that

E(WiW j) = P(Pi, P j are both k − full).

Note that Pi = (l, i−l) for some 0 ≤ l ≤ i, then we have that P j = (l+m, j−l−m) for some 0 ≤ m ≤ j−i.
The probability that Pi and P j are both k-full is∑

0≤l≤i
gcd(l,i−l) is k−full

∑
0≤m≤ j−i

gcd(l+m, j−l−m) is k−full

P
(
Pi = (l, i − l), P j = (l + m, j − l − m)

)
.

Note that
P
(
Pi = (l, i − l), P j = (l + m, j − l − m)

)
= Cα(i, l)Cα( j − i,m),

gcd(l, i − l) = gcd(l, i) and gcd(l + m, j − l − m) = gcd(l + m, j). Then we have that

E(WiW j) =
∑
0≤l≤i

gcd(l,i) is k−full

Cα(i, l)Pk,α(l, j, j − i), (4.7)

where Pk,α is given by (2.12). For Pk,α(l, j, j − i), applying Lemma 2.6, we obtain that

Pk,α(l, j, j − i) = fk( j) + Oα

( τ3( j)
√

j − i

)
, (4.8)

where fk( j) is given by (2.8). Inserting (4.8) into (4.7), we obtain that

E(WiW j) =
∑
0≤l≤i

gcd(l,i) is k−full

Cα(i, l)
(

fk( j) + Oα

( τ3( j)
√

j − i

))
.
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By the binomial theorem, the contribution of the O-term to E(WiW j) is Oα(τ3( j)/
√

j − i). Hence, we
have that

E(WiW j) = fk( j)
∑
0≤l≤i

gcd(l,i) is k−full

Cα(i, l) + Oα

( τ3( j)
√

j − i

)
.

Applying Lemma 2.6 again to the sum over l, we obtain that

E(WiW j) = fk( j)
(

fk(i) + Oα

(τ3(i)
√

i

))
+ Oα

( τ3( j)
√

j − i

)
= fk(i) fk( j) + Oα

(τ3( j)τ3(i)
√

i

)
+ Oα

( τ3( j)
√

j − i

)
,

where we have used bound (2.9). Summing over 1 ≤ i < j ≤ n and using Lemma 2.1 to estimate the
contribution of the above O-terms, we obtain that∑

1≤i< j≤n

E(WiW j) =
∑

1≤i< j≤n

fk(i) fk( j) + Oα

(
n3/2 log4 n

)
.

Note that

2
∑

1≤i< j≤n

fk(i) fk( j) =
( ∑

1≤i≤n

fk(i)
)2
−

∑
1≤i≤n

f 2
k (i) =

( ∑
1≤i≤n

fk(i)
)2

+ O(n log8 n), (4.9)

where we have used bound (2.2) and∑
1≤i≤n

f 2
k (i) �

∑
1≤i≤n

τ2
3(i) � n log8 n.

Then we have that

2
∑

1≤i< j≤n

E(WiW j) =
( ∑

1≤i≤n

fk(i)
)2

+ Oα

(
n3/2 log4 n

)
. (4.10)

Now Proposition 4.2 follows from inserting (4.5), (4.10) and (4.6) into (4.4). �

Combining Propositions 4.1, 4.2 with Lemma 2.4, we obtain Theorem 1.2.
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