Research article Special Issues

Existence and essential stability of Nash equilibria for biform games with Shapley allocation functions

  • Received: 26 August 2021 Revised: 02 February 2022 Accepted: 10 February 2022 Published: 16 February 2022
  • MSC : 46T20, 49J53, 91A10, 91A12, 91A40

  • We define the Shapley allocation function (SAF) based on the characteristic function on a set of strategy profiles composed of infinite strategies to establish an n-person biform game model. It is the extension of biform games with finite strategies and scalar strategies. We prove the existence of Nash equilibria for this biform game with SAF, provided that the characteristic function satisfies the linear and semicontinuous conditions. We investigate the essential stability of Nash equilibria for biform games when characteristic functions are perturbed. We identify a residual dense subclass of the biform games whose Nash equilibria are all essential and deduce the existence of essential components of the Nash equilibrium set by proving the connectivity of its minimal essential set.

    Citation: Chenwei Liu, Shuwen Xiang, Yanlong Yang. Existence and essential stability of Nash equilibria for biform games with Shapley allocation functions[J]. AIMS Mathematics, 2022, 7(5): 7706-7719. doi: 10.3934/math.2022432

    Related Papers:

  • We define the Shapley allocation function (SAF) based on the characteristic function on a set of strategy profiles composed of infinite strategies to establish an n-person biform game model. It is the extension of biform games with finite strategies and scalar strategies. We prove the existence of Nash equilibria for this biform game with SAF, provided that the characteristic function satisfies the linear and semicontinuous conditions. We investigate the essential stability of Nash equilibria for biform games when characteristic functions are perturbed. We identify a residual dense subclass of the biform games whose Nash equilibria are all essential and deduce the existence of essential components of the Nash equilibrium set by proving the connectivity of its minimal essential set.



    加载中


    [1] S. J. Grossman, O. D. Hart, The costs and benefits of ownership: A theory of vertical and lateral integration, J. Polit. Econ., 94 (1986), 691-719. https://doi.org/10.1086/261404 doi: 10.1086/261404
    [2] O. Hart, J. Moore, Property rights and the nature of the firm, J. Polit. Econ., 98 (1990), 1119-1158. https://doi.org/10.1086/261729 doi: 10.1086/261729
    [3] A. Brandenburger, H. Stuart, Biform games, Manag. Sci., 53 (2007), 537-549. https://doi.org/10.1287/mnsc.1060.0591
    [4] C. W. Liu, S. W. Xiang, Y. Y. Yang, A biform game model with the Shapley allocation functions, Mathematics, 9 (2021), 1872. https://doi.org/10.3390/math9161872 doi: 10.3390/math9161872
    [5] L. S. Shapley, A value for n-person games, In: A. W. Tucker, R. D. Luce, Contributions to the theory of game, 2 Eds., Princeton: Princeton University Press, 1953.
    [6] E. Feess, J. H. Thun, Surplus division and investment incentives in supply chains: A biform-game analysis, Eur. J. Oper. Res., 234 (2014), 763-773. https://doi.org/10.1016/j.ejor.2013.09.039 doi: 10.1016/j.ejor.2013.09.039
    [7] L. Li, B. Chen, A system analysis and biform game modeling to emerging function and value of innovation networks, Procedia Comput. Sci., 55 (2015), 852-861. https://doi.org/10.1016/j.procs.2015.07.150 doi: 10.1016/j.procs.2015.07.150
    [8] P. Fiala, Profit allocation games in supply chains, Cent. Eur. J. Oper. Res., 24 (2016), 267-281. https://doi.org/10.1007/s10100-015-0423-6 doi: 10.1007/s10100-015-0423-6
    [9] J. X. Nan, P. P. Wang, D. F. Li, A solution method for Shapley-based equilibrium strategies of biform games, Chin. J. Manage. Sci., 29 (2021), 202-209. https://doi.org/10.16381/j.cnki.issn1003-207x.2018.0642 doi: 10.16381/j.cnki.issn1003-207x.2018.0642
    [10] E. L. Plambeck, T. A. Taylor, Sell the plant? The impact of contract manufacturing on innovation, capacity, and profitability, Manage. Sci., 51 (2005), 133-150. https://doi.org/10.1287/mnsc.1040.0212 doi: 10.1287/mnsc.1040.0212
    [11] N. S. Summerfield, M. Dror, Biform game: Reflection as a stochastic programming problem, Int. J. Prod. Econ., 142 (2013), 124-129. https://doi.org/10.1016/j.ijpe.2012.10.021 doi: 10.1016/j.ijpe.2012.10.021
    [12] G. Fandel, J. Trockel, Investment and lot size planning in a supply chain: Coordinating a just-in-time-delivery with a Harris- or a Wagner/Whitin-solution, J. Bus. Econ., 86 (2016), 173-195. https://doi.org/10.1007/s11573-015-0800-6 doi: 10.1007/s11573-015-0800-6
    [13] F. F. González, A. H. van der Weijde, E. Sauma, The promotion of community energy projects in Chile and Scotland: An economic approach using biform games, Energy Econ., 86 (2020), 104677. https://doi.org/10.1016/j.eneco.2020.104677 doi: 10.1016/j.eneco.2020.104677
    [14] S. Govindan, R. Wilson, Essential equilibria, Proc. Natl. Acad. Sci. U. S. A, 102 (2005), 15706-15711. https://dx.doi.org/10.1073%2Fpnas.0506796102
    [15] J. Nash, Non-cooperative games, Ann. Math., 54 (1951), 286-295.
    [16] E. Kohlberg, J. F. Mertens, On the strategic stability of equilibria, Econometrica, 54 (1986), 1003-1037.
    [17] W. T. Wu, J. H. Jiang, Essential equilibrium points of n-person non-cooperative games, Sci. China Ser. A, 10 (1962), 7-22.
    [18] J. Yu, S. W. Xiang, On essential components of the set of Nash equilibrium points, Nonlinear Anal., 38 (1999), 259-264. https://doi.org/10.1016/S0362-546X(98)00193-X doi: 10.1016/S0362-546X(98)00193-X
    [19] J. Yu, Essential equilibria points of n-person noncooperative game, J. Math. Econ., 31 (1999), 361-372. https://doi.org/10.1016/S0304-4068(97)00060-8 doi: 10.1016/S0304-4068(97)00060-8
    [20] Y. H. Zhou, J. Yu, S. W. Xiang, Essential stability in games with infinitely many pure strategies, Int. J. Game Theory, 35 (2007), 493-503. https://doi.org/10.1007/s00182-006-0063-0 doi: 10.1007/s00182-006-0063-0
    [21] O. Carbonell-Nicolau, Essential equilibria in normal-form games, J. Econ. Theory, 145 (2010), 421-431. https://doi.org/10.1016/j.jet.2009.06.002
    [22] O. Carbonell-Nicolau, Further results on essential Nash equilibria in normal-form games, Econ. Theory, 59 (2015), 277-300. https://doi.org/10.1007/s00199-014-0829-8
    [23] V. Scalzo, Essential equilibria of discontinuous games, Econ. Theory, 54 (2013), 27-44. https://doi.org/10.1007/s00199-012-0726-y doi: 10.1007/s00199-012-0726-y
    [24] Y. H. Zhou, J. Yu, S. W. Xiang, L. Wang, Essential stability in games with endogenous sharing rules, J. Math. Econ., 45 (2009), 233-240. https://doi.org/10.1016/j.jmateco.2008.09.003 doi: 10.1016/j.jmateco.2008.09.003
    [25] Z. Yang, Y. Ju, Existence and generic stability of cooperative equilibria for multi-leader-multi-follower games, J. Glob. Optim., 65 (2016), 563-573. https://doi.org/10.1007/s10898-015-0393-1 doi: 10.1007/s10898-015-0393-1
    [26] Z. Yang, Essential stability of α-core, Int. J. Game Theory, 46 (2017), 13-28. https://doi.org/10.1007/s00182-015-0515-5 doi: 10.1007/s00182-015-0515-5
    [27] Z. Yang, H. Q. Zhang, Essential stability of cooperative equilibria for population games, Optim. Lett., 13 (2019), 1573-1582. https://doi.org/10.1007/s11590-018-1303-5 doi: 10.1007/s11590-018-1303-5
    [28] K. K. Tan, J. Yu, X. Z. Yuan, Existence theorems of Nash equilibria for non-cooperative n-person games, Int. J. Game Theory, 24 (1995), 217-222. https://doi.org/10.1007/BF01243152 doi: 10.1007/BF01243152
    [29] F. E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301. https://doi.org/10.1007/BF01350721 doi: 10.1007/BF01350721
    [30] J. P. Aubin, Mathematical methods of games and economic theory, 2 Eds., Amsterdam: North-Holland, 1982.
    [31] M. K. Fort, Points of continuity of semicontinuous functions, Publ. Math. Debr., 2 (1951), 100-102.
    [32] R. Engelking, General topology, Berlin: Heldermann Verlag, 1989.
    [33] S. Kinoshita, On essential components of the set of fixed points, Osaka Math. J., 4 (1952), 19-22.
    [34] Z. Nikooeinejad, A. Delavarkhalafi, M. Heydari, A numerical solution of open-loop Nash equilibrium in nonlinear differential games based on Chebyshev pseudospectral method, J. Comput. Appl. Math., 300 (2016), 369-384. https://doi.org/10.1016/j.cam.2016.01.019 doi: 10.1016/j.cam.2016.01.019
    [35] J. C. Engwerda, On the open-loop Nash equilibrium in LQ games, J. Econ. Dyn. Control, 22 (1998), 729-762. https://doi.org/10.1016/S0165-1889(97)00084-5 doi: 10.1016/S0165-1889(97)00084-5
    [36] G. Tabellini, Money, debt and deficits in a dynamic game, J. Econ. Dyn. Control, 4 (1986), 427-442. https://doi.org/10.1016/S0165-1889(86)80001-X
    [37] Z. Nikooeinejad, M. Heydari, M. Saffarzadeh, G. B. Loghmani, J. Engwerda, Numerical simulation of non-cooperative and cooperative equilibrium solutions for a stochastic government debt stabilization game, Comput. Econ., 2021. https://doi.org/10.1007/s10614-021-10109-6 doi: 10.1007/s10614-021-10109-6
    [38] K. Larsson, M. Nossman, Jumps and stochastic volatility in oil prices: Time series evidence, Energy Econ., 33 (2011), 504-514. https://doi.org/10.1016/j.eneco.2010.12.016 doi: 10.1016/j.eneco.2010.12.016
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1350) PDF downloads(78) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog