Research article Special Issues

Does FinTech drive asymmetric risk spillover in the traditional finance?

  • Received: 09 September 2022 Revised: 20 October 2022 Accepted: 27 October 2022 Published: 10 November 2022
  • MSC : 03, 91

  • The rapid development of fintech has caused a great impact on traditional financial industries. It improves the quality of financial services but also buries potential risks at the same time. This paper takes China's FinTech and traditional financial industry as the research objects based on the daily yield data from 2019 to 2022. First, we measure the systemic risk index ∆CoVaR (Conditional Value at Risk) of the FinTech industry and traditional financial industries after effectively fitting the marginal distribution of industry return data. Second, we decompose the systemic risk sequences of FinTech and traditional financial industries to obtain the data at different frequencies with the combination of the frequency decomposition method. Finally, we use the quantile-on-quantile regression model to analyze the risk spillover effect of the FinTech industry driving traditional financial industries in different frequencies under different risk states. The article draws the following conclusion: first, in general, the peak of the positive risk spillover impact of FinTech on the traditional industries is mainly concentrated in the high quantile of FinTech, while the peak of the negative impact is mainly concentrated in the low quantile of FinTech. Second, the risk spillover impact direction of FinTech on the five traditional financial industries mainly changes from negative to positive under high trading frequency and low trading frequency, and takes a U-shape in medium trading frequency.

    Citation: Huayu Sun, Fanqi Zou, Bin Mo. Does FinTech drive asymmetric risk spillover in the traditional finance?[J]. AIMS Mathematics, 2022, 7(12): 20850-20872. doi: 10.3934/math.20221143

    Related Papers:

  • The rapid development of fintech has caused a great impact on traditional financial industries. It improves the quality of financial services but also buries potential risks at the same time. This paper takes China's FinTech and traditional financial industry as the research objects based on the daily yield data from 2019 to 2022. First, we measure the systemic risk index ∆CoVaR (Conditional Value at Risk) of the FinTech industry and traditional financial industries after effectively fitting the marginal distribution of industry return data. Second, we decompose the systemic risk sequences of FinTech and traditional financial industries to obtain the data at different frequencies with the combination of the frequency decomposition method. Finally, we use the quantile-on-quantile regression model to analyze the risk spillover effect of the FinTech industry driving traditional financial industries in different frequencies under different risk states. The article draws the following conclusion: first, in general, the peak of the positive risk spillover impact of FinTech on the traditional industries is mainly concentrated in the high quantile of FinTech, while the peak of the negative impact is mainly concentrated in the low quantile of FinTech. Second, the risk spillover impact direction of FinTech on the five traditional financial industries mainly changes from negative to positive under high trading frequency and low trading frequency, and takes a U-shape in medium trading frequency.



    加载中


    [1] K. Peng, G. Yan, A survey on deep learning for financial risk prediction, Quant. Financ. Econ., 5 (2021), 716–737. https://doi.org/10.3934/QFE.2021032 doi: 10.3934/QFE.2021032
    [2] The FinTech revolution: a wave of startups is changing finance—for the better, The Economist, 2015. Available from: https://www.economist.com/leaders/2015/05/09/the-fintech-revolution.
    [3] M. Wang, R. Gu, M. Wang, J. Zhang, Research on the impact of finance on promoting technological innovation based on the state-space model, Green Finance, 3 (2021), 119–137. https://doi.org/10.3934/GF.2021007 doi: 10.3934/GF.2021007
    [4] I. Lee, Y. J. Shin, FinTech: Ecosystem, business models, investment decisions, and challenges, Bus. Horizons, 61 (2018), 35–46. https://doi.org/10.1016/j.bushor.2017.09.003 doi: 10.1016/j.bushor.2017.09.003
    [5] A. Lagna, M. N. Ravishankar, Making the world a better place with fintech research, Inform. Syst. J., 32 (2022), 61–102. https://doi.org/10.1111/isj.12333 doi: 10.1111/isj.12333
    [6] D. W. H. Fung, W. Y. Lee, J. J. H. Yeh, F. L. Yuen, Friend or foe: The divergent effects of FinTech on financial stability, Emerg. Mark. Rev., 45 (2020), 100727. https://doi.org/10.1016/j.ememar.2020.100727 doi: 10.1016/j.ememar.2020.100727
    [7] P. Gomber, R. J. Kauffman, C. Parker, B. W. Weber, On the FinTech revolution: interpreting the forces of innovation, disruption, and transformation in financial services, J Manage. Inform. Syst., 35 (2018), 220–265. https://doi.org/10.1080/07421222.2018.1440766 doi: 10.1080/07421222.2018.1440766
    [8] D. Wojcik, Geographies of finance I: exploring FinTech–maps and concept, Prog. Hum. Geog., 45 (2021), 566–576. https://doi.org/10.1177/0309132520952865 doi: 10.1177/0309132520952865
    [9] K. A. Kommel, M. Sillasoo, A. Lubloy, Could crowdsourced financial analysis replace the equity research by investment banks?, Financ. Res. Lett., 29 (2019), 280–284. https://doi.org/10.1016/j.frl.2018.08.007 doi: 10.1016/j.frl.2018.08.007
    [10] I. Romānova, M. Kudinska, Banking and Fintech: a challenge or opportunity?, In: Contemporary issues in finance: current challenges from across Europe, Bingley: Emerald Group Publishing Limited, 2016, 21–35. https://doi.org/10.1108/S1569-375920160000098002
    [11] D. Salerno, G. Sampagnaro, V. Verdoliva, Fintech and IPO underpricing: an explorative study, Financ. Res. Lett., 44 (2022), 102071. https://doi.org/10.1016/j.frl.2021.102071 doi: 10.1016/j.frl.2021.102071
    [12] M. Cheng, Y. Qu, Does bank FinTech reduce credit risk? Evidence from China, Pac.-Basin Financ. J., 63 (2020), 101398. https://doi.org/10.1016/j.pacfin.2020.101398 doi: 10.1016/j.pacfin.2020.101398
    [13] V. Murinde, E. Rizopoulos, M. Zachariadis, The impact of the FinTech revolution on the future of banking: opportunities and risks, Int. Rev. Financ. Anal., 81 (2022), 102103. https://doi.org/10.1016/j.irfa.2022.102103 doi: 10.1016/j.irfa.2022.102103
    [14] A. K. Tsoukala, G. Tsiotas, Assessing green bond risk: an empirical investigation, Green Finance, 3 (2021), 222–252. https://doi.org/10.3934/GF.2021012 doi: 10.3934/GF.2021012
    [15] J. Li, J. Li, X. Zhu, Y. Yao, B. Casu, Risk spillovers between FinTech and traditional financial institutions: evidence from the U.S., Int. Rev. Financ. Anal., 71 (2020), 101544. https://doi.org/10.1016/j.irfa.2020.101544 doi: 10.1016/j.irfa.2020.101544
    [16] T. Pi, H. Hu, J. Lu, X. Chen, The analysis of FinTech risks in China: based on fuzzy models, Mathematics, 10 (2022), 1395. https://doi.org/10.3390/math10091395 doi: 10.3390/math10091395
    [17] R. Bartlett, A. Morse, R. Stanton, N. Wallace, Consumer-lending discrimination in the FinTech Era, J. Financ. Econ., 143 (2022), 30–56. https://doi.org/10.1016/j.jfineco.2021.05.047 doi: 10.1016/j.jfineco.2021.05.047
    [18] M. Cheng, Y. Qu, Does bank FinTech reduce credit risk? Evidence from China, Pac.-Basin Financ. J., 63 (2020), 101398. https://doi.org/10.1016/j.pacfin.2020.101398 doi: 10.1016/j.pacfin.2020.101398
    [19] M. Juenger, M. Mietzner, Banking goes digital: the adoption of FinTech services by German households, Financ. Res. Lett., 34 (2020), 101260. https://doi.org/10.1016/j.frl.2019.08.008 doi: 10.1016/j.frl.2019.08.008
    [20] R. Hinson, R. Lensink, A. Mueller, Transforming agribusiness in developing countries: SDGs and the role of FinTech, Curr. Opin. Env. Sust., 41 (2019), 1–9. https://doi.org/10.1016/j.cosust.2019.07.002 doi: 10.1016/j.cosust.2019.07.002
    [21] Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity?, Economic Research-Ekonomska Istrazavanja, 35 (2022), 4902–4921. https://doi.org/10.1080/1331677X.2021.2019596 doi: 10.1080/1331677X.2021.2019596
    [22] L. Wei, Y. Deng, J. Huang, C. Han, Z. Jing, Identification and analysis of financial technology risk factors based on textual risk disclosures, J. Theor. Appl. Electron. Commer. Res., 17 (2022), 590–612. https://doi.org/10.3390/jtaer17020031 doi: 10.3390/jtaer17020031
    [23] A. Fuster, M. Plosser, P. Schnabl, J. Vickery, The role of technology in mortgage lending, Rev. Financ. Stud., 32 (2019), 1854–1899. https://doi.org/10.1093/rfs/hhz018 doi: 10.1093/rfs/hhz018
    [24] E. Brown, D. Piroska, Governing FinTech and FinTech as governance: the regulatory sandbox, riskwashing, and disruptive social classification, New Polit. Econ., 27 (2022), 19–32. https://doi.org/10.1080/13563467.2021.1910645 doi: 10.1080/13563467.2021.1910645
    [25] Y. Yao, J. Li, X. Sun, Measuring the risk of Chinese FinTech industry: evidence from the stock index, Financ. Res. Lett., 39 (2021), 101564. https://doi.org/10.1016/j.frl.2020.101564 doi: 10.1016/j.frl.2020.101564
    [26] C. Li, Quantitative measurement and analysis of FinTech risk in China, Economic Research-Ekonomska Istrazavanja, 35 (2022), 2596–2614. https://doi.org/10.1080/1331677X.2021.1970606 doi: 10.1080/1331677X.2021.1970606
    [27] H. F. de Mendonca, R. B. da Silva, Effect of banking and macroeconomic variables on systemic risk: an application of Delta COVAR for an emerging economy, N. Amer. J. Econ. Financ., 43 (2018), 141–157. https://doi.org/10.1016/j.najef.2017.10.011 doi: 10.1016/j.najef.2017.10.011
    [28] Z. Li, H. Dong, C. Floros, A. Charemis, P. Failler, Re-examining bitcoin volatility: a CAViaR-based approach, Emerg. Mark. Financ. Tr., 58 (2022), 1320–1338. https://doi.org/10.1080/1540496X.2021.187312 doi: 10.1080/1540496X.2021.1873127
    [29] Z. Li, L. Chen, H. Dong, What are bitcoin market reactions to its-related events?, Int. Rev. Econ. Financ., 73 (2021), 1–10. https://doi.org/10.1016/j.iref.2020.12.020 doi: 10.1016/j.iref.2020.12.020
    [30] T. Adrian, M. K. Brunnermeier, CoVaR, Amer. Econ. Rev., 106 (2016), 1705–1741. https://doi.org/10.1257/aer.20120555 doi: 10.1257/aer.20120555
    [31] T. Li, J. Zhong, Z. Huang, Potential dependence of financial cycles between emerging and developed countries: based on ARIMA-GARCH copula model, Emerg. Mark. Financ. Tr., 56 (2020), 1237–1250. https://doi.org/10.1080/1540496X.2019.1611559 doi: 10.1080/1540496X.2019.1611559
    [32] S. Singhal, S. Ghosh, Returns and volatility linkages between international crude oil price, metal and other stock indices in India: evidence from VAR-DCC-GARCH models, Resour. Policy, 50 (2016), 276–288. https://doi.org/10.1016/j.resourpol.2016.10.001 doi: 10.1016/j.resourpol.2016.10.001
    [33] Y. Jiang, H. Nie, J. Y. Monginsidi, Co-movement of ASEAN stock markets: new evidence from wavelet and VMD-based copula tests, Econ. Model., 64 (2017), 384–398. https://doi.org/10.1016/j.econmod.2017.04.012 doi: 10.1016/j.econmod.2017.04.012
    [34] X. Sun, X. Chen, J. Wang, J. Li, Multi-scale interactions between economic policy uncertainty and oil prices in time-frequency domains, N. Amer. J. Econ. Financ., 51 (2020), 100854. https://doi.org/10.1016/j.najef.2018.10.002 doi: 10.1016/j.najef.2018.10.002
    [35] Y. Jiang, G. Tian, B. Mo, Spillover and quantile linkage between oil price shocks and stock returns: new evidence from G7 countries, Financial Innovation, 6 (2020), 1–26. https://doi.org/10.1186/s40854-020-00208-y doi: 10.1186/s40854-020-00208-y
    [36] S. Chen, J. Zhong, P. Failler, Does China transmit financial cycle spillover effects to the G7 countries?, Economic Research-Ekonomska Istrazavanja, 35 (2021), 5184–5201. https://doi.org/10.1080/1331677X.2021.2025123 doi: 10.1080/1331677X.2021.2025123
    [37] Z. Li, J. Zhong, Impact of economic policy uncertainty shocks on China's financial conditions, Financ. Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303
    [38] Y. Liu, Z. Li, M. Xu, The influential factors of financial cycle spillover: evidence from China, Emerg. Mark. Financ. Tr., 56 (2019), 1336–1350. https://doi.org/10.1080/1540496X.2019.1658076 doi: 10.1080/1540496X.2019.1658076
    [39] K. Gokmenoglu, B. M. Eren, S. Hesami, Exchange rates and stock markets in emerging economies: new evidence using the Quantile-on-Quantile approach, Quant. Financ. Econ., 5 (2021), 94–110. https://doi.org/10.3934/QFE.2021005 doi: 10.3934/QFE.2021005
    [40] N. Sim, H. Zhou, Oil prices, US stock return, and the dependence between their quantiles, J. Bank. Financ., 55 (2015), 1–8. https://doi.org/10.1016/j.jbankfin.2015.01.013 doi: 10.1016/j.jbankfin.2015.01.013
    [41] Y. Jiang, G. Tian, Y. Wu, B. Mo, Impacts of geopolitical risks and economic policy uncertainty on Chinese tourism-listed company stock, Int. J. Financ. Econ., 27 (2022), 320–333. https://doi.org/10.1002/ijfe.2155 doi: 10.1002/ijfe.2155
    [42] J. Jagtiani, K. John, Fintech: the impact on consumers and regulatory responses, J. Econ. Bus., 100 (2018), 1–6. https://doi.org/10.1016/j.jeconbus.2018.11.002 doi: 10.1016/j.jeconbus.2018.11.002
    [43] Z. Li, C. Yang, Z. Huang, How does the FinTech sector react to signals from central bank digital currencies?, Financ. Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
    [44] M. Hosen, M. Y. Broni, M. N. Uddin, What bank specific and macroeconomic elements influence non-performing loans in Bangladesh? Evidence from conventional and Islamic banks, Green Finance, 2 (2020), 212–226. https://doi.org/10.3934/GF.2020012 doi: 10.3934/GF.2020012
    [45] F. Sardo, Z. Serrasqueiro, Intellectual capital and high-tech firms' financing choices in the European context: a panel data analysis, Quant. Financ. Econ., 5 (2021), 1–18. https://doi.org/10.3934/QFE.2021001 doi: 10.3934/QFE.2021001
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1601) PDF downloads(121) Cited by(3)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog