Research article

On the fixed space induced by a group action

  • Received: 22 June 2022 Accepted: 16 September 2022 Published: 22 September 2022
  • MSC : Primary 46C99, Secondary 05E18, 20C15, 05E15, 05E10

  • This article studies connections between group actions and their corresponding vector spaces. Given an action of a group $ G $ on a non-empty set $ X $, we examine the space $ L(X) $ of scalar-valued functions on $ X $ and its fixed subspace: $ L^G(X) = \{f\in L(X): f(a\cdot x) = f(x) \; {\rm{ for\; all }}\; a\in G, x\in X\} $. In particular, we show that $ L^G(X) $ is an invariant of the action of $ G $ on $ X $. In the case when the action is finite, we compute the dimension of $ L^G(X) $ in terms of fixed points of $ X $ and prove several prominent results for $ L^G(X) $, including Bessel's inequality and Frobenius reciprocity.

    Citation: Teerapong Suksumran. On the fixed space induced by a group action[J]. AIMS Mathematics, 2022, 7(12): 20615-20626. doi: 10.3934/math.20221130

    Related Papers:

  • This article studies connections between group actions and their corresponding vector spaces. Given an action of a group $ G $ on a non-empty set $ X $, we examine the space $ L(X) $ of scalar-valued functions on $ X $ and its fixed subspace: $ L^G(X) = \{f\in L(X): f(a\cdot x) = f(x) \; {\rm{ for\; all }}\; a\in G, x\in X\} $. In particular, we show that $ L^G(X) $ is an invariant of the action of $ G $ on $ X $. In the case when the action is finite, we compute the dimension of $ L^G(X) $ in terms of fixed points of $ X $ and prove several prominent results for $ L^G(X) $, including Bessel's inequality and Frobenius reciprocity.



    加载中


    [1] T. M. Apostol, Modular functions and Dirichlet series in number theory, 2 Eds., New York: Springer, 1990. https://doi.org/10.1007/978-1-4612-0999-7
    [2] C. W. Curtis, I. Reiner, Methods of representation theory: With applications to finite groups and orders, Vol. 1, New York: John Wiley & Sons, 1981.
    [3] I. Dolgachev, Lectures on invariant theory, London Mathematical Society Lecture Note Series, Vol. 296, Cambridge University Press, 2003.
    [4] K. Hristova, Frobenius reciprocity for topological groups, Commun. Algebra, 47 (2019), 2102–2117. https://doi.org/10.1080/00927872.2018.1529773 doi: 10.1080/00927872.2018.1529773
    [5] A. Kerber, Applied finite group actions, 2 Eds., Berlin, Heidelberg: Springer, 1999. https://doi.org/10.1007/978-3-662-11167-3
    [6] D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, Berlin, Heidelberg: Springer, 1994.
    [7] M. D. Neusel, L. Smith, Invariant theory of finite groups, Mathematical Surveys and Monographs, Vol. 94, Providence, RI: American Mathematical Society, 2002.
    [8] S. Roman, Advanced linear algebra, 3 Eds., New York: Springer, 2008. https://doi.org/10.1007/978-0-387-72831-5
    [9] B. Steinberg, Representation theory of finite groups, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-0776-8
    [10] T. Suksumran, Extension of Maschke's theorem, Commun. Algebra, 47 (2019), 2192–2203. https://doi.org/10.1080/00927872.2018.1530251 doi: 10.1080/00927872.2018.1530251
    [11] T. Suksumran, Complete reducibility of gyrogroup representations, Commun. Algebra, 48 (2020), 847–856. https://doi.org/10.1080/00927872.2019.1662916 doi: 10.1080/00927872.2019.1662916
    [12] T. Suksumran, Left regular representation of gyrogroups, Mathematics, 8 (2020), 1–9. https://doi.org/10.3390/math8010012 doi: 10.3390/math8010012
    [13] A. A. Ungar, Analytic hyperbolic geometry and Albert Einstein's special theory of relativity, Singapore: World Scientific, 2008.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1303) PDF downloads(70) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog