This article studies connections between group actions and their corresponding vector spaces. Given an action of a group $ G $ on a non-empty set $ X $, we examine the space $ L(X) $ of scalar-valued functions on $ X $ and its fixed subspace: $ L^G(X) = \{f\in L(X): f(a\cdot x) = f(x) \; {\rm{ for\; all }}\; a\in G, x\in X\} $. In particular, we show that $ L^G(X) $ is an invariant of the action of $ G $ on $ X $. In the case when the action is finite, we compute the dimension of $ L^G(X) $ in terms of fixed points of $ X $ and prove several prominent results for $ L^G(X) $, including Bessel's inequality and Frobenius reciprocity.
Citation: Teerapong Suksumran. On the fixed space induced by a group action[J]. AIMS Mathematics, 2022, 7(12): 20615-20626. doi: 10.3934/math.20221130
This article studies connections between group actions and their corresponding vector spaces. Given an action of a group $ G $ on a non-empty set $ X $, we examine the space $ L(X) $ of scalar-valued functions on $ X $ and its fixed subspace: $ L^G(X) = \{f\in L(X): f(a\cdot x) = f(x) \; {\rm{ for\; all }}\; a\in G, x\in X\} $. In particular, we show that $ L^G(X) $ is an invariant of the action of $ G $ on $ X $. In the case when the action is finite, we compute the dimension of $ L^G(X) $ in terms of fixed points of $ X $ and prove several prominent results for $ L^G(X) $, including Bessel's inequality and Frobenius reciprocity.
[1] | T. M. Apostol, Modular functions and Dirichlet series in number theory, 2 Eds., New York: Springer, 1990. https://doi.org/10.1007/978-1-4612-0999-7 |
[2] | C. W. Curtis, I. Reiner, Methods of representation theory: With applications to finite groups and orders, Vol. 1, New York: John Wiley & Sons, 1981. |
[3] | I. Dolgachev, Lectures on invariant theory, London Mathematical Society Lecture Note Series, Vol. 296, Cambridge University Press, 2003. |
[4] | K. Hristova, Frobenius reciprocity for topological groups, Commun. Algebra, 47 (2019), 2102–2117. https://doi.org/10.1080/00927872.2018.1529773 doi: 10.1080/00927872.2018.1529773 |
[5] | A. Kerber, Applied finite group actions, 2 Eds., Berlin, Heidelberg: Springer, 1999. https://doi.org/10.1007/978-3-662-11167-3 |
[6] | D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, Berlin, Heidelberg: Springer, 1994. |
[7] | M. D. Neusel, L. Smith, Invariant theory of finite groups, Mathematical Surveys and Monographs, Vol. 94, Providence, RI: American Mathematical Society, 2002. |
[8] | S. Roman, Advanced linear algebra, 3 Eds., New York: Springer, 2008. https://doi.org/10.1007/978-0-387-72831-5 |
[9] | B. Steinberg, Representation theory of finite groups, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-0776-8 |
[10] | T. Suksumran, Extension of Maschke's theorem, Commun. Algebra, 47 (2019), 2192–2203. https://doi.org/10.1080/00927872.2018.1530251 doi: 10.1080/00927872.2018.1530251 |
[11] | T. Suksumran, Complete reducibility of gyrogroup representations, Commun. Algebra, 48 (2020), 847–856. https://doi.org/10.1080/00927872.2019.1662916 doi: 10.1080/00927872.2019.1662916 |
[12] | T. Suksumran, Left regular representation of gyrogroups, Mathematics, 8 (2020), 1–9. https://doi.org/10.3390/math8010012 doi: 10.3390/math8010012 |
[13] | A. A. Ungar, Analytic hyperbolic geometry and Albert Einstein's special theory of relativity, Singapore: World Scientific, 2008. |