Research article

Some generalized fixed point results via a $ \tau $-distance and applications

  • Received: 22 February 2021 Accepted: 13 October 2021 Published: 25 October 2021
  • MSC : Primary 47H10, Secondary 54H25

  • The aim of this manuscript is to present some new fixed point results in complete partially order metric spaces and to derive some extended forms of Suzuki and Banach fixed point theorems via a $ \tau $-distance by applying some new control functions. Our results are extensions of several existing fixed point theorems in the literature. To show the dominance of the established results, some examples and an application are studied.

    Citation: Farhan Khan, Muhammad Sarwar, Arshad Khan, Muhammad Azeem, Hassen Aydi, Aiman Mukheimer. Some generalized fixed point results via a $ \tau $-distance and applications[J]. AIMS Mathematics, 2022, 7(1): 1346-1365. doi: 10.3934/math.2022080

    Related Papers:

  • The aim of this manuscript is to present some new fixed point results in complete partially order metric spaces and to derive some extended forms of Suzuki and Banach fixed point theorems via a $ \tau $-distance by applying some new control functions. Our results are extensions of several existing fixed point theorems in the literature. To show the dominance of the established results, some examples and an application are studied.



    加载中


    [1] L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. doi: 10.1090/S0002-9939-1974-0356011-2. doi: 10.1090/S0002-9939-1974-0356011-2
    [2] I. Ekland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443–474. doi: 10.1090/S0273-0979-1979-14595-6
    [3] M. Hegedus, New generalization of Banach's contraction priciple, Acta Sci. Math., 42 (1980), 87–89.
    [4] K. M. Ghosh, A generalization of contraction principle, Int. J. Math. Math. Sci., 4 (1981), 201–207. doi: 10.1155/S0161171281000148. doi: 10.1155/S0161171281000148
    [5] J. Caristi, Fixed point theorem for mapping satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251. doi:10.1090/S0002-9947-1976-0394329-4. doi: 10.1090/S0002-9947-1976-0394329-4
    [6] F. Khojasteh, E. Karapinar, H. Khandani, Some applications of Caristi's fixed point theorem in metric spaces, Fixed Point Theory Appl., 2016 (2016), 1–10. doi: 10.1186/s13663-016-0501-z. doi: 10.1186/s13663-016-0501-z
    [7] E. Karapınar, F. Khojasteh, Z. D. Mitrović, A Proposal for revisiting Banach and Caristi type theorems in b-metric spaces, Mathematics, 7 (2019), 1–4. doi: 10.3390/math7040308. doi: 10.3390/math7040308
    [8] W. Du, E. Karapinar, A note on Caristi-type cyclic mapps, related results and applications, Fixed Point Theory Appl., 2013 (2013), 1–13. doi: 10.1186/1687-1812-2013-344. doi: 10.1186/1687-1812-2013-344
    [9] E. Karapinar, Generalization of Caristi-Kirik's theorem on partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 1–7. doi: 10.1186/1687-1812-2011-4. doi: 10.1186/1687-1812-2011-4
    [10] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric space, Math. Japon., 44 (1996), 381–391.
    [11] Y. J. Cho, R. Saadati, S. H. Shenghua, Common fixed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl., 61 (2011), 1254–1260. doi:10.1016/j.camwa.2011.01.004. doi: 10.1016/j.camwa.2011.01.004
    [12] E. Graily, S. M. Vaezpour, R. Saadati, Y. J. Cho, Generalization of fixed point theorems in ordered metric spaces concerning generalized distance, Fixed Point Theory Appl., 2011 (2011), 1–8. doi: 10.1186/1687-1812-2011-30. doi: 10.1186/1687-1812-2011-30
    [13] C. Mongkolkeha, Y. J. Cho, Some coincidence point theorems in ordered metric spaces via $w$-distances, Carpathian J. Math., 34 (2018), 207–214. doi: 10.37193/CJM.2018.02.09
    [14] W. Sintunavarat, Y. J. Cho, P. Kumam, Common fixed point theorems for $c$-distance in ordered cone metric spaces, Comput. Math. Appl., 62 (2011), 1969–1978. doi: 10.1016/j.camwa.2011.06.040. doi: 10.1016/j.camwa.2011.06.040
    [15] C. A. Gil, E. Karapınar, J. M. Molina, P. T. Pelaez, Revisiting Bianchini and Grandolfi Theorem in the context of modified $\omega$-distances, Results Math., 74 (2019), 1–7. doi: 10.1007/s00025-019-1074-z. doi: 10.1007/s00025-019-1074-z
    [16] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253 (2001), 440–458. doi: 10.1006/jmaa.2000.7151. doi: 10.1006/jmaa.2000.7151
    [17] J. S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl., 284 (2003), 690–697. doi: 10.1016/S0022-247X(03)00387-1. doi: 10.1016/S0022-247X(03)00387-1
    [18] T. Suzuki, Generalized Caristi's fixed point theorem by Bae and others, J. Math. Anal. Appl., 302 (2005), 502–508. doi: 10.1016/j.jmaa.2004.08.019. doi: 10.1016/j.jmaa.2004.08.019
    [19] M. A. Khamsi, Remarks on Cristi's fixed point theorem, Nonlinear Anal., 71 (2009), 227–231. doi: 10.1016/j.na.2008.10.042. doi: 10.1016/j.na.2008.10.042
    [20] T. Suzuki, B. Alamri, L. A. Khan, Caristi's fixed point theorem and subrahmanyam's fixed point theorem in $\upsilon$-generalized metric spaces, J. Funct. Spaces, 2015 (2015), 1–6. doi: 10.1155/2015/709391. doi: 10.1155/2015/709391
    [21] W. S. Du, On generalized caristi's fixed point theorem and its equivalence, Nonlinear Anal. Differ. Equ., 4 (2016), 635–644. doi: 10.12988/nade.2016.6977. doi: 10.12988/nade.2016.6977
    [22] W. Kozlowski, A purely metric proof of the Caristi fixed point theorem, Bull. Australian Math. Soc., 95 (2017), 333–337. doi: 10.1017/S0004972716000800. doi: 10.1017/S0004972716000800
    [23] T. Suzuki, Caracterization of $\sum$-semicompleteness via Caristi's fixed point theorem in semi metric spaces, J. Funct. Spaces, 2018 (2018), 1–7. doi: 10.1155/2018/9435470. doi: 10.1155/2018/9435470
    [24] H. Isik, B. Mohammadi, M. Reza, V. Parvaneh, On a new generalization of Banach contraction principle with application, Mathematics, 7 (2019), 862. doi: 10.3390/math7090862. doi: 10.3390/math7090862
    [25] E. Karapinar, Rational forms that imply the uniquness of fixed points in partial metric spaces, J. Nonlinear Convex Anal., 20 (2019), 2171–2186.
    [26] V. Gupta, N. Mani, J. Jindal, Some new fixed point theorems for generalized weak contraction in partially ordered metric spaces, Wiley, 2 (2020), 1–9. doi: 10.1002/cmm4.1115. doi: 10.1002/cmm4.1115
    [27] B. Alqahtani, H. Aydi, E. Karapınar, V. Rakocević, A solution for Volterra fractional integral equations by Hybrid contractions, Mathematics, 7 (2019), 1–10. doi: 10.3390/math7080694. doi: 10.3390/math7080694
    [28] R. S. Adıguzel, Ü. Aksoy, E. Karapınar, I. M. Erhan, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, RACSAM, 115 (2021), 1–16. doi: 10.1007/s13398-021-01095-3. doi: 10.1007/s13398-021-01095-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2013) PDF downloads(100) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog