Research article

Stress analysis of elastic bi-materials by using the localized method of fundamental solutions

  • Received: 20 May 2021 Accepted: 18 October 2021 Published: 22 October 2021
  • MSC : 35E20, 65N22

  • The localized method of fundamental solutions belongs to the family of meshless collocation methods and now has been successfully tried for many kinds of engineering problems. In the method, the whole computational domain is divided into a set of overlapping local subdomains where the classical method of fundamental solutions and the moving least square method are applied. The method produces sparse and banded stiffness matrix which makes it possible to perform large-scale simulations on a desktop computer. In this paper, we document the first attempt to apply the method for the stress analysis of two-dimensional elastic bi-materials. The multi-domain technique is employed to handle the non-homogeneity of the bi-materials. Along the interface of the bi-material, the displacement continuity and traction equilibrium conditions are applied. Several representative numerical examples are presented and discussed to illustrate the accuracy and efficiency of the present approach.

    Citation: Juan Wang, Wenzhen Qu, Xiao Wang, Rui-Ping Xu. Stress analysis of elastic bi-materials by using the localized method of fundamental solutions[J]. AIMS Mathematics, 2022, 7(1): 1257-1272. doi: 10.3934/math.2022074

    Related Papers:

  • The localized method of fundamental solutions belongs to the family of meshless collocation methods and now has been successfully tried for many kinds of engineering problems. In the method, the whole computational domain is divided into a set of overlapping local subdomains where the classical method of fundamental solutions and the moving least square method are applied. The method produces sparse and banded stiffness matrix which makes it possible to perform large-scale simulations on a desktop computer. In this paper, we document the first attempt to apply the method for the stress analysis of two-dimensional elastic bi-materials. The multi-domain technique is employed to handle the non-homogeneity of the bi-materials. Along the interface of the bi-material, the displacement continuity and traction equilibrium conditions are applied. Several representative numerical examples are presented and discussed to illustrate the accuracy and efficiency of the present approach.



    加载中


    [1] A. Karageorghis, D. Lesnic, Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions, Comput. Methods Appl. Mech. Eng., 197 (2008), 3122-3137. doi: 10.1016/j.cma.2008.02.011. doi: 10.1016/j.cma.2008.02.011
    [2] Z. H. Yao, J. D. Xu, H. T. Wang, X. P. Zheng, Simulation of CNT composites using fast multipole BEM, J. Mar. Sci. Tech. -Taiw., 17 (2009), 5. doi: 10.51400/2709-6998.1956. doi: 10.51400/2709-6998.1956
    [3] B. T. Johansson, D. Lesnic, A method of fundamental solutions for transient heat conduction in layered materials, Eng. Anal. Bound. Elem., 33 (2009), 1362-1367. doi: 10.1016/j.enganabound.2009.04.014. doi: 10.1016/j.enganabound.2009.04.014
    [4] Y. Gu, W. Chen, C. Zhang, Stress analysis for thin multilayered coating systems using a sinh transformed boundary element method, Int. J. Solids Struct., 50 (2013), 3460-3471. doi: 10.1016/j.ijsolstr.2013.06.018. doi: 10.1016/j.ijsolstr.2013.06.018
    [5] Y. Gu, C. Zhang, Novel special crack-tip elements for interface crack analysis by an efficient boundary element method, Eng. Fract. Mech., 239 (2020), 107302. doi: 10.1016/j.engfracmech.2020.107302. doi: 10.1016/j.engfracmech.2020.107302
    [6] J. F. Luo, Y. J. Liu, E. J. Berger, Interfacial stress analysis for multi-coating systems using an advanced boundary element method, Comput. Mech., 24 (2000), 448-455. doi: 10.1007/s004660050004. doi: 10.1007/s004660050004
    [7] Y. -M. Zhang, Y. Gu, J. -T. Chen, Stress analysis for multilayered coating systems using semi-analytical BEM with geometric non-linearities, Comput. Mech., 47 (2011), 493-504. doi: 10.1007/s00466-010-0559-0. doi: 10.1007/s00466-010-0559-0
    [8] Y. Gu, J. Lei, Fracture mechanics analysis of two-dimensional cracked thin structures (from micro- to nano-scales) by an efficient boundary element analysis, Results. Appl. Math., 11 (2021), 100172. doi: 10.1016/j.rinam.2021.100172. doi: 10.1016/j.rinam.2021.100172
    [9] W. Qu, H. He, A spatial-temporal GFDM with an additional condition for transient heat conduction analysis of FGMs, Appl. Math. Lett., 110 (2020), 106579. doi: 10.1016/j.aml.2020.106579. doi: 10.1016/j.aml.2020.106579
    [10] F. Wang, C. Wang, Z. Chen, Local knot method for 2D and 3D convection-diffusion-reaction equations in arbitrary domains, Appl. Math. Lett., 105 (2020), 106308. doi: 10.1016/j.aml.2020.106308. doi: 10.1016/j.aml.2020.106308
    [11] J. Lin, C. S. Chen, C. -S. Liu, J. Lu, Fast simulation of multi-dimensional wave problems by the sparse scheme of the method of fundamental solutions, Comput. Math. Appl., 72 (2016), 555-567. doi: 10.1016/j.camwa.2016.05.016. doi: 10.1016/j.camwa.2016.05.016
    [12] Z. -J. Fu, J. Zhang, P. -W. Li, J. -H. Zheng, A semi-Lagrangian meshless framework for numerical solutions of two-dimensional sloshing phenomenon, Eng. Anal. Bound. Elem., 112 (2020), 58-67. doi: 10.1016/j.enganabound.2019.12.003. doi: 10.1016/j.enganabound.2019.12.003
    [13] Y. Gu, L. Sun, Electroelastic analysis of two-dimensional ultrathin layered piezoelectric films by an advanced boundary element method, Int. J. Numer. Meth. Eng., 122 (2021), 2653-2671. doi: 10.1002/nme.6635. doi: 10.1002/nme.6635
    [14] X. Li, H. Dong, An element-free Galerkin method for the obstacle problem, Appl. Math. Lett., 112 (2021), 106724. doi: 10.1016/j.aml.2020.106724. doi: 10.1016/j.aml.2020.106724
    [15] X. Li, S. Li, A linearized element-free Galerkin method for the complex Ginzburg-Landau equation, Comput. Math. Appl., 90 (2021), 135-147. doi: 10.1016/j.camwa.2021.03.027. doi: 10.1016/j.camwa.2021.03.027
    [16] G. R. Liu, T. Nguyen-Thoi, H. Nguyen-Xuan, K. Y. Lam, A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Comput. Struct., 87 (2009), 14-26. doi: 10.1016/j.compstruc.2008.09.003. doi: 10.1016/j.compstruc.2008.09.003
    [17] C. S. Chen, H. A. Cho, M. A. Golberg, Some comments on the ill-conditioning of the method of fundamental solutions, Eng. Anal. Bound. Elem., 30 (2006), 405-410. doi: 10.1016/j.enganabound.2006.01.001. doi: 10.1016/j.enganabound.2006.01.001
    [18] H. Xia, Y. Gu, Generalized finite difference method for electroelastic analysis of three-dimensional piezoelectric structures, Appl. Math. Lett., 117 (2021), 107084. doi: 10.1016/j.aml.2021.107084. doi: 10.1016/j.aml.2021.107084
    [19] W. Qu, C. -M. Fan, X. Li, Analysis of an augmented moving least squares approximation and the associated localized method of fundamental solutions, Comput. Math. Appl., 80 (2020), 13-30. doi: 10.1016/j.camwa.2020.02.015. doi: 10.1016/j.camwa.2020.02.015
    [20] P. -W. Li, Z. -J. Fu, Y. Gu, L. Song, The generalized finite difference method for the inverse Cauchy problem in two-dimensional isotropic linear elasticity, Int. J. Solids Struct., 174-175 (2019), 69-84. doi: 10.1016/j.ijsolstr.2019.06.001. doi: 10.1016/j.ijsolstr.2019.06.001
    [21] F. J. Wang, C. M. Fan, C. Z. Zhang, J. Lin, A localized space-time method of fundamental solutions for diffusion and convection-diffusion problems, Adv. Appl. Math. Mech., 12 (2020), 940-958. doi: 10.4208/aamm.OA-2019-0269. doi: 10.4208/aamm.OA-2019-0269
    [22] W. Qu, Y. Gu, Y. Zhang, C. -M. Fan, C. Zhang, A combined scheme of generalized finite difference method and Krylov deferred correction technique for highly accurate solution of transient heat conduction problems, Int. J. Numer. Meth. Eng., 117 (2019), 63-83. doi: 10.1002/nme.5948. doi: 10.1002/nme.5948
    [23] W. Qu, W. Chen, Z. Fu, Y. Gu, Fast multipole singular boundary method for Stokes flow problems, Math. Comput. Simulat., 146 (2018), 57-69. doi: 10.1016/j.matcom.2017.10.001. doi: 10.1016/j.matcom.2017.10.001
    [24] F. Wang, Y. Gu, W. Qu, C. Zhang, Localized boundary knot method and its application to large-scale acoustic problems, Comput. Methods Appl. Mech. Eng., 361 (2020), 112729. doi: 10.1016/j.cma.2019.112729. doi: 10.1016/j.cma.2019.112729
    [25] P. -W. Li, Space-time generalized finite difference nonlinear model for solving unsteady Burgers' equations, Appl. Math. Lett., 114 (2021), 106896. doi: 10.1016/j.aml.2020.106896. doi: 10.1016/j.aml.2020.106896
    [26] W. Qu, H. He, A GFDM with supplementary nodes for thin elastic plate bending analysis under dynamic loading, Appl. Math. Lett., 124 (2022), 107664. doi: 10.1016/j.aml.2021.107664. doi: 10.1016/j.aml.2021.107664
    [27] W. Qu, H. Gao, Y. Gu, Integrating Krylov deferred correction and generalized finite difference methods for dynamic simulations of wave propagation phenomena in long-time intervals, Adv. Appl. Math. Mech., 13 (2021), 1398-1417. doi: 10.4208/aamm.OA-2020-0178. doi: 10.4208/aamm.OA-2020-0178
    [28] C. S. Chen, C. M. Fan, P. H. Wen, The method of approximate particular solutions for solving certain partial differential equations, Numer. Methods Partial Differential Equtaions, 28 (2012), 506-522. doi: 10.1002/num.20631. doi: 10.1002/num.20631
    [29] C. J. S. Alves, On the choice of source points in the method of fundamental solutions, Eng. Anal. Bound. Elem., 33 (2009), 1348-1361. doi: 10.1016/j.enganabound.2009.05.007. doi: 10.1016/j.enganabound.2009.05.007
    [30] G. Fairweather, A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., 9 (1998): 69. doi: 10.1023/a:1018981221740. doi: 10.1023/a:1018981221740
    [31] J. Lin, W. Chen, L. Sun, Simulation of elastic wave propagation in layered materials by the method of fundamental solutions, Eng. Anal. Bound. Elem., 57 (2015), 88-95. doi: 10.1016/j.enganabound.2014.11.007. doi: 10.1016/j.enganabound.2014.11.007
    [32] J. R. Berger, A. Karageorghis, The method of fundamental solutions for layered elastic materials, Eng. Anal. Bound. Elem., 25 (2001), 877-886. doi: 10.1016/S0955-7997(01)00002-9. doi: 10.1016/S0955-7997(01)00002-9
    [33] J. R. Berger, A. Karageorghis, P. A. Martin, Stress intensity factor computation using the method of fundamental solutions: mixed-mode problems, Int. J. Numer. Methods Eng., 69 (2007), 469-483. doi: 10.1002/nme.1774. doi: 10.1002/nme.1774
    [34] G. C. de Medeiros, P. W. Partridge, J. O. Brandão, The method of fundamental solutions with dual reciprocity for some problems in elasticity, Eng. Anal. Bound. Elem., 28 (2004), 453-461. doi: 10.1016/s0955-7997(03)00099-7. doi: 10.1016/s0955-7997(03)00099-7
    [35] A. Karageorghis, G. Fairweather, The method of fundamental solutions for axisymmetric elasticity problems, Comput. Mech., 25 (2000), 524-532. doi: 10.1007/s004660050500. doi: 10.1007/s004660050500
    [36] A. Karageorghis, D. Lesnic, L. Marin, The method of fundamental solutions for the detection of rigid inclusions and cavities in plane linear elastic bodies, Comput. Struct., 106-107 (2012), 176-188. doi: 10.1016/j.compstruc.2012.05.001. doi: 10.1016/j.compstruc.2012.05.001
    [37] A. Karageorghis, D. Lesnic, The method of fundamental solutions for the inverse conductivity problem, Inverse. Probl. Sci. Eng., 18 (2010), 567-583. doi: 10.1080/17415971003675019. doi: 10.1080/17415971003675019
    [38] A. Karageorghis, D. Lesnic, L. Marin, The method of fundamental solutions for three-dimensional inverse geometric elasticity problems, Comput. Struct., 166 (2016), 51-59. doi: 10.1016/j.compstruc.2016.01.010. doi: 10.1016/j.compstruc.2016.01.010
    [39] Z. -C. Li, H. -T. Huang, M. -G. Lee, J. Y. Chiang, Error analysis of the method of fundamental solutions for linear elastostatics, J. Comput. Appl. Math., 251 (2013), 133-153. doi: 10.1016/j.cam.2013.03.018. doi: 10.1016/j.cam.2013.03.018
    [40] Q. G. Liu, B. Šarler, Non-singular Method of Fundamental Solutions for anisotropic elasticity, Eng. Anal. Bound. Elem., 45 (2014), 68-78. doi: 10.1016/j.enganabound.2014.01.020. doi: 10.1016/j.enganabound.2014.01.020
    [41] Q. G. Liu, B. Šarler, A non-singular method of fundamental solutions for two-dimensional steady-state isotropic thermoelasticity problems, Eng. Anal. Bound. Elem., 75 (2017), 89-102. doi: 10.1016/j.enganabound.2016.11.010. doi: 10.1016/j.enganabound.2016.11.010
    [42] Q. G. Liu, B. Šarler, Non-singular method of fundamental solutions for elasticity problems in three-dimensions, Eng. Anal. Bound. Elem., 96 (2018), 23-35. doi: 10.1016/j.enganabound.2018.07.018. doi: 10.1016/j.enganabound.2018.07.018
    [43] B. Sarler, Q. G. Liu, Non-singular method of fundamental solutions for two-dimensional isotropic elasticity problems, Comput. Model. Eng. Sci., 91 (2013), 235-266. doi: 10.3970/cmes.2013.091.235. doi: 10.3970/cmes.2013.091.235
    [44] L. Marin, Regularized method of fundamental solutions for boundary identification in two-dimensional isotropic linear elasticity, Int. J. Solids Struct., 47 (2010), 3326-3340. doi: 10.1016/j.ijsolstr.2010.08.010. doi: 10.1016/j.ijsolstr.2010.08.010
    [45] L. Marin, D. Lesnic, The method of fundamental solutions for the Cauchy problem in two-dimensional linear elasticity, Int. J. Solids Struct., 41 (2004), 3425-3438. doi: 10.1016/j.ijsolstr.2004.02.009. doi: 10.1016/j.ijsolstr.2004.02.009
    [46] A. Poullikkas, A. Karageorghis, G. Georgiou, The method of fundamental solutions for three-dimensional elastostatics problems, Comput. Struct., 80 (2002), 365-370. doi: 10.1016/s0045-7949(01)00174-2. doi: 10.1016/s0045-7949(01)00174-2
    [47] C. M. Fan, Y. K. Huang, C. S. Chen, S. R. Kuo, Localized method of fundamental solutions for solving two-dimensional Laplace and biharmonic equations, Eng. Anal. Bound. Elem., 101 (2019), 188-197. doi: 10.1016/j.enganabound.2018.11.008. doi: 10.1016/j.enganabound.2018.11.008
    [48] Y. Gu, C. -M. Fan, W. Qu, F. Wang, C. Zhang, Localized method of fundamental solutions for three-dimensional inhomogeneous elliptic problems: theory and MATLAB code, Comput. Mech., 64 (2019), 1567-1588. doi: 10.1007/s00466-019-01735-x. doi: 10.1007/s00466-019-01735-x
    [49] Y. Gu, C. -M. Fan, W. Qu, F. Wang, Localized method of fundamental solutions for large-scale modelling of three-dimensional anisotropic heat conduction problems - Theory and MATLAB code, Comput. Struct., 220 (2019), 144-155. doi: 10.1016/j.compstruc.2019.04.010. doi: 10.1016/j.compstruc.2019.04.010
    [50] W. Qu, C. -M. Fan, Y. Gu, F. Wang, Analysis of three-dimensional interior acoustic fields by using the localized method of fundamental solutions, Appl. Math. Model., 76 (2019), 122-132. doi: 10.1016/j.apm.2019.06.014. doi: 10.1016/j.apm.2019.06.014
    [51] Y. Gu, M. V. Golub, C. -M. Fan, Analysis of in-plane crack problems using the localized method of fundamental solutions, Eng. Fract. Mech., 256 (2021), 107994. doi: 10.1016/j.engfracmech.2021.107994. doi: 10.1016/j.engfracmech.2021.107994
    [52] Y. Gu, C. -M. Fan, Z. Fu, Localized method of fundamental solutions for three-dimensional elasticity problems: Theory, Adv. Appl. Math. Mech., 13 (2021), 1520-1534. doi: 10.4208/aamm.OA-2020-0134. doi: 10.4208/aamm.OA-2020-0134
    [53] Y. Wang, Y. Gu, J. Liu, A domain-decomposition generalized finite difference method for stress analysis in three-dimensional composite materials, Appl. Math. Lett., 104 (2020), 106226. doi: 10.1016/j.aml.2020.106226. doi: 10.1016/j.aml.2020.106226
    [54] Y. Wang, Y. Gu, C. -M. Fan, W. Chen, C. Zhang, Domain-decomposition generalized finite difference method for stress analysis in multi-layered elastic materials, Eng. Anal. Bound. Elem., 94 (2018), 94-102. doi: 10.1016/j.enganabound.2018.06.006. doi: 10.1016/j.enganabound.2018.06.006
    [55] Y. Gu, C. -M. Fan, R. -P. Xu, Localized method of fundamental solutions for large-scale modeling of two-dimensional elasticity problems, Appl. Math. Lett., 93 (2019), 8-14. doi: 10.1016/j.aml.2019.01.035. doi: 10.1016/j.aml.2019.01.035
    [56] Y. Gu, C. Zhang, Fracture analysis of ultra-thin coating/substrate structures with interface cracks, Int. J. Solids Struct., 225 (2021), 111074. doi: 10.1016/j.ijsolstr.2021.111074. doi: 10.1016/j.ijsolstr.2021.111074
    [57] S. Liu, P. -W. Li, C. -M. Fan, Y. Gu, Localized method of fundamental solutions for two- and three-dimensional transient convection-diffusion-reaction equations, Eng. Anal. Bound. Elem., 124 (2021), 237-244. doi: 10.1016/j.enganabound.2020.12.023. doi: 10.1016/j.enganabound.2020.12.023
    [58] Z. -Q. Bai, Y. Gu, C. -M. Fan, A direct Chebyshev collocation method for the numerical solutions of three-dimensional Helmholtz-type equations, Eng. Anal. Bound. Elem., 104 (2019), 26-33. doi: 10.1016/j.enganabound.2019.03.023. doi: 10.1016/j.enganabound.2019.03.023
    [59] Y. Gu, W. Chen, X. Q. He, Domain-decomposition singular boundary method for stress analysis in multi-layered elastic materials, CMC-Comput. Mater. Con., 29 (2012), 129-154. doi: 10.3970/cmc.2012.029.129. doi: 10.3970/cmc.2012.029.129
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1993) PDF downloads(63) Cited by(2)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog