Research article

The general Albertson irregularity index of graphs

  • Received: 19 August 2021 Accepted: 22 September 2021 Published: 29 September 2021
  • MSC : 05C05, 05C07, 05C09, 05C35

  • We introduce the general Albertson irregularity index of a connected graph $ G $ and define it as $ A_{p}(G) = (\sum_{uv\in E(G)}|d(u)-d(v)|^p)^{\frac{1}{p}} $, where $ p $ is a positive real number and $ d(v) $ is the degree of the vertex $ v $ in $ G $. The new index is not only generalization of the well-known Albertson irregularity index and $ \sigma $-index, but also it is the Minkowski norm of the degree of vertex. We present lower and upper bounds on the general Albertson irregularity index. In addition, we study the extremal value on the general Albertson irregularity index for trees of given order. Finally, we give the calculation formula of the general Albertson index of generalized Bethe trees and Kragujevac trees.

    Citation: Zhen Lin, Ting Zhou, Xiaojing Wang, Lianying Miao. The general Albertson irregularity index of graphs[J]. AIMS Mathematics, 2022, 7(1): 25-38. doi: 10.3934/math.2022002

    Related Papers:

  • We introduce the general Albertson irregularity index of a connected graph $ G $ and define it as $ A_{p}(G) = (\sum_{uv\in E(G)}|d(u)-d(v)|^p)^{\frac{1}{p}} $, where $ p $ is a positive real number and $ d(v) $ is the degree of the vertex $ v $ in $ G $. The new index is not only generalization of the well-known Albertson irregularity index and $ \sigma $-index, but also it is the Minkowski norm of the degree of vertex. We present lower and upper bounds on the general Albertson irregularity index. In addition, we study the extremal value on the general Albertson irregularity index for trees of given order. Finally, we give the calculation formula of the general Albertson index of generalized Bethe trees and Kragujevac trees.



    加载中


    [1] M. O. Albertson, The irregularity of a graph, Ars Combin., 46 (1997), 219–225.
    [2] H. Abdo, S. Brandt, D. Dimitrov, The total irregularity of a graph, DMTCS, 16 (2014), 201–206.
    [3] H. Abdoa, N. Cohenb, D. Dimitrov, Graphs with maximal irregularity, Filomat, 28 (2014), 1315–1322. doi: 10.2298/FIL1407315A. doi: 10.2298/FIL1407315A
    [4] H. Abdo, D. Dimitrov, The irregularity of graphs under graph operations, Discuss. Math. Graph T., 34 (2014), 263–278. doi: 10.7151/dmgt.1733. doi: 10.7151/dmgt.1733
    [5] H. Abdo, D. Dimitrov, I. Gutman, Graphs with maximal $\sigma$ irregularity, Discrete Appl. Math., 250 (2018), 57–64. doi: 10.1016/j.dam.2018.05.013. doi: 10.1016/j.dam.2018.05.013
    [6] B. Bollobás, P. Erdős, Graphs of extremal weights, Ars Combin., 50 (1998), 225–233.
    [7] X. D. Chen, Y. P. Hou, F. G. Lin, Some new spectral bounds for graph irregularity, Appl. Math. Comput., 320 (2018), 331–340. doi: 10.1016/j.amc.2017.09.038. doi: 10.1016/j.amc.2017.09.038
    [8] D. Dimitrov, T. Réti, Graphs with equal irregularity indices, Acta Polytech. Hung., 11 (2014), 41–57.
    [9] E. Estrada, Quantifying network heterogeneity, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 82 (2010), 066102. doi: 10.1103/PhysRevE.82.066102. doi: 10.1103/PhysRevE.82.066102
    [10] I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16.
    [11] I. Gutman, Some basic properties of Sombor indices, Open J. Discret. Appl. Math., 4 (2021), 1–3. doi: 10.30538/psrp-odam2021.0047. doi: 10.30538/psrp-odam2021.0047
    [12] I. Gutman, P. Hansen, H. Mélot, Variable neighborhood search for extremal graphs. 10. comparison of irregularity indices for chemical trees, J. Chem. Inf. Model., 45 (2005), 222–230. doi: 10.1021/ci0342775. doi: 10.1021/ci0342775
    [13] I. Gutman, M. Togan, A. Yurttas, A. S. Cevik, I. N. Cangul, Inverse problem for sigma index, MATCH Commun. Math. Comput. Chem., 79 (2018), 491–508.
    [14] I. Gutman, Y.N. Yeh, S.L. Lee, J.C. Chen, Wiener numbers of dendrimers, MATCH Commun. Math. Comput. Chem., 30 (1994), 103–115.
    [15] S. A. Hosseini, M. B. Ahmadi, I. Gutman, Kragujevac trees with minimal atom-bond connectivity index, MATCH Commun. Math. Comput. Chem., 71 (2014), 5–20.
    [16] O. J. Heilmann, E. H. Lieb, Theory of monomer-dimer systems, Commun. Math. Phys., 25 (1972), 190–232. doi: 10.1007/BF01877590. doi: 10.1007/BF01877590
    [17] M. A. Henninga, D. Rautenbach, On the irregularity of bipartite graphs, Discrete Math., 307 (2007), 1467–1472. doi: 10.1016/j.disc.2006.09.038. doi: 10.1016/j.disc.2006.09.038
    [18] X. L. Li, J. Zheng, A unifled approach to the extremal trees for difierent indices, MATCH Commun. Math. Comput. Chem., 54 (2005), 195–208.
    [19] M. Ostilli, Cayley trees and Bethe lattices: A concise analysis for mathematicians and physicists, Physica A, 391 (2012), 3417–3423. doi: 10.1016/j.physa.2012.01.038. doi: 10.1016/j.physa.2012.01.038
    [20] I. Rivin, Counting cycles and finite dimensional $L^p$ norms, Adv. Appl. Math., 29 (2002), 647–662. doi: 10.1016/S0196-8858(02)00037-4. doi: 10.1016/S0196-8858(02)00037-4
    [21] T. Réti, On some properties of graph irregularity indices with a particular regard to the $\sigma$-index, Appl. Math. Comput., 344–345 (2019), 107–115. doi: 10.1016/j.amc.2018.10.010. doi: 10.1016/j.amc.2018.10.010
    [22] O. Rojo, R. D. J. Alarcón, Line graph of combinations of generalized Bethe trees: Eigenvalues and energy, Linear Algebra Appl., 435 (2011), 2402–2419. doi: 10.1016/j.laa.2010.10.008. doi: 10.1016/j.laa.2010.10.008
    [23] O. Rojo, M. Robbiano, An explicit formula for eigenvalues of Bethe trees and upper bounds on the largest eigenvalue of any tree, Linear Algebra Appl., 427 (2007), 138–150. doi: /10.1016/j.laa.2007.06.024. doi: 10.1016/j.laa.2007.06.024
    [24] T. Réti, R. Sharafdini, H. Haghbin, Á. Drégelyi-Kiss, Graph irregularity indices used as molecular descriptors in QSPR studies, MATCH Commun. Math. Comput. Chem., 79 (2018), 509–524.
    [25] M. Robbianoa, V. Trevisan, Applications of recurrence relations for the characteristic polynomials of Bethe trees, Comput. Math. Appl., 59 (2010), 3039–3044. doi: 10.1016/j.camwa.2010.02.023. doi: 10.1016/j.camwa.2010.02.023
    [26] L. A. Székely, L. H. Clark, R. C. Entringer, An inequality for degree sequences, Discrete Math., 103 (1992), 293–300. doi: 10.1016/0012-365X(92)90321-6. doi: 10.1016/0012-365X(92)90321-6
    [27] M. K. Siddiqui, M. Imran, M. A. Iqbal, Molecular descriptors of discrete dynamical system in fractal and Cayley tree type dendrimers, J. Appl. Math. Comput., 61 (2019), 57–72. doi: 10.1007/s12190-019-01238-1. doi: 10.1007/s12190-019-01238-1
    [28] T. Vetrík, M. Masre, General eccentric connectivity index of trees and unicyclic graphs, Discrete Appl. Math., 284 (2020), 301–315. doi: 10.1016/j.dam.2020.03.051. doi: 10.1016/j.dam.2020.03.051
    [29] Y. Wu, F. Y. Wei, B. L. Liu, Z. Jia, The generalized (terminal) Wiener polarity index of generalized Bethe trees and coalescence of rooted trees, MATCH Commun. Math. Comput. Chem., 70 (2013), 603–620.
    [30] K. X. Xu, K. C. Das, A. D. Maden, On a novel eccentricity-based invariant of a graph, Acta Math. Sin., 32 (2016), 1477–1493. doi: 10.1007/s10114-016-5518-z. doi: 10.1007/s10114-016-5518-z
    [31] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210–218. doi: 10.1007/s10910-009-9542-4. doi: 10.1007/s10910-009-9542-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2105) PDF downloads(202) Cited by(2)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog