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Abstract: We introduce the general Albertson irregularity index of a connected graph G and define it
as Ap(G) = (

∑
uv∈E(G) |d(u) − d(v)|p)

1
p , where p is a positive real number and d(v) is the degree of the

vertex v in G. The new index is not only generalization of the well-known Albertson irregularity index
and σ-index, but also it is the Minkowski norm of the degree of vertex. We present lower and upper
bounds on the general Albertson irregularity index. In addition, we study the extremal value on the
general Albertson irregularity index for trees of given order. Finally, we give the calculation formula
of the general Albertson index of generalized Bethe trees and Kragujevac trees.
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1. Introduction

Let G be a simple undirected connected graph with the vertex set V(G) and the edge set E(G). For
v ∈ V(G), N(v) denotes the set of all neighbors of v, and d(v) = |N(v)| denotes the degree of vertex v
in G. The minimum and the maximum degree of G are denoted by δ(G) and ∆(G), or simply δ and ∆,
respectively. A pendant vertex of G is a vertex of degree one. A graph G is called (∆, δ)-semiregular if
{d(u), d(v)} = {∆, δ} holds for all edges uv ∈ E(G). Denote by Pn and K1, n−1 the path and the star with
n vertices, respectively.

In 1997, the Albertson irregularity index of a connected graph G, introduced by Albertson [1], is
defined as

Alb(G) =
∑

uv∈E(G)

|d(u) − d(v)|.

This index has been of interest to mathematicians, chemists and scientists from related fields due to the
fact that the Albertson irregularity index plays a major role in irregularity measures of graphs [3, 4, 7,
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8, 17], predicting the biological activities and properties of chemical compounds in the QSAR/QSPR
modeling [12, 24] and the quantitative characterization of network heterogeneity [9]. By the natural
extension of the Albertson irregularity index, Gutman et al., [13] recently proposed the σ-index as
follows:

σ(G) =
∑

uv∈E(G)

(d(u) − d(v))2 = F − 2M2,

where F and M2 are well-known the forgotten topological index and the second Zagreb index of a graph
G, respectively. Recently, the σ-index of a connected graph G is studied, such as the characterization
of extremal graphs [5] and mathematical relations between the σ-index and other graph irregularity
indices [21].

The generalization of topological index is a trend of mathematical chemistry in recent years. Many
classical topological indices are generalized, such as the general Randić index [6], the first general
Zagreb index [18], the general sum-connectivity index [31], the general eccentric connectivity index
[28], etc. Motivated by this fact, we propose the general Albertson irregularity index of a graph G as
follows:

Ap(G) =

 ∑
uv∈E(G)

|d(u) − d(v)|p


1
p

,

where p is a positive real number. Evidently, A1(G) = Alb(G) and A2
2(G) = σ(G). The other motivation

is that the topological index formed from distance function of the degree of vertex has attracted exten-
sive attention of scholars. In 2021, Gutman [10] proposed the Sombor index of a graph G and defined
it as S O(G) =

∑
uv∈E(G)

√
d2(u) + d2(v), which is the Euclidean norm of d(u) and d(v). According to

Gutman [11], it is imaginable to use other distance function to study properties of graphs. Based on
this, it is not difficult to find that Ap(G) is the Minkowski norm of d(u) and d(v), which is unification
of absolute distance, Euclidean distance and Chebyshev distance. Hence Ap(G) = ∆ − δ as p becomes
infinite. In particular, Ap(G) is the lp-norm of d(u) and d(v) for p ≥ 1.

We will first recall some useful notions and lemmas used further in Section 2. In Section 3, upper
and lower bounds on the general Albertson irregularity index of graphs are given, and the extremal
graphs are characterized. In Section 4, the first two trees with minimum general Albertson irregularity
index are determined in all trees of fixed order. In Section 5, the general Albertson index of the well-
known generalized Bethe trees and Kragujevac trees is obtained.

2. Preliminaries

Let u ∨ G be the graph by adding all edges between the vertex u and V(G), see for example in
Figure 1. The first general Zagreb index of a graph G is defined as Zp(G) =

∑
v∈V(G) dp(v) for any real

number p. The distance between two vertices u, v ∈ V(G), denoted by d(u, v), is defined as the length
of a shortest path between u and v. The eccentricity of v, ε(v), is the distance between v and any vertex
which is furthest from v in G. The line graph L(G) is the graph whose vertex set are the edges in G,
where two vertices are adjacent if the corresponding edges in G have a common vertex. Let Tn be the
set of trees with n vertices. A spider is a tree with at most one vertex of degree more than two.
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u G = P5 u ∨G

u

Figure 1. Graph u ∨G.

Lemma 2.1. (Power mean inequality) Let x1, x2, . . . , xn be positive real numbers and p, q real num-
bers such that p > q. Then, 1

n

n∑
i=1

xp
i


1
p

≥

1
n

n∑
i=1

xq
i


1
q

,

with equality if and only if x1 = x2 = · · · = xn.

Lemma 2.2. (Hölder inequality) Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be two n-tuples of real num-
bers and let p, q be two positive real numbers such that 1

p + 1
q = 1. Then∣∣∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣∣∣ ≤
 n∑

i=1

|ai|
p


1
p
 n∑

i=1

|bi|
q


1
q

,

with equality if and only if |ai|
p = λ|bi|

q for some real constant λ, 1 ≤ i ≤ n.

Lemma 2.3. ([26]) If p ≥ 1 is an integer and 0 ≤ x1, x2, . . . , xn ≤ n − 1, then n∑
i=1

xp
i


1
p

≤ (n − 1)1− 1
p

n∑
i=1

x
1
p

i .

Lemma 2.4. (Minkowski inequality) Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be two n-tuples of real
numbers. If p ≥ 1. Then  n∑

i=1

|ai + bi|
p


1
p

≤

 n∑
i=1

|ai|
p


1
p

+

 n∑
i=1

|bi|
p


1
p

, (2.1)

with equality if and only if ai = λbi for some real constant λ, 1 ≤ i ≤ n. For 0 < p < 1, the inequality
(2.1) gets reversed.

Lemma 2.5. ([20]) Let x = (x1, x2, . . . , xk, . . .) be a non-zero vector. Then for p ≥ 2,

||x||p ≤ ||x||2,

with equality if and only if all but one of the xi are equal to 0.

Lemma 2.6. Let G be a connected graph. Suppose there exists a vertex u ∈ V(G) with
d(u) ≥ 3, v1, v2, . . . , vl and w1,w2, . . . ,wt are two path components in G − u, where N(u) =

{v1,w1, u1, u2, . . . , ud(u)−2}. Let G′ = G − uw1 + vlw1. Then
(i) If p > 0 and d(u) > d(ui), then Ap(G) > Ap(G′).
(ii) If p ≥ 1 and d(u) ≥ d(ui), then Ap(G) > Ap(G′).
(iii) If p > 0 and ∆ = d(u) = 3, then Ap(G) > Ap(G′).
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Proof. Let s = d(u)−2. Since d(u) > d(ui), d(u) ≥ 3, d(v1) ≤ 2 and d(w1) ≤ 2, we have |d(u)−d(ui)|p−
|d(u) − d(ui) − 1|p > 0 and |d(u) − d(v1)|p − |d(u) − d(v1) − 1|p + 1 > 0. Then

Ap
p(G) − Ap

p(G′) =
∑

uv∈E(G)

|d(u) − d(v)|p −
∑

u′v′∈E(G′)

|d(u′) − d(v′)|p

=

s∑
i=1

(|d(u) − d(ui)|p − |d(u) − d(ui) − 1|p) + |d(u) − d(w1)|p

+|d(u) − d(v1)|p − |d(u) − d(v1) − 1|p + 1
> 0.

Thus we have Ap(G) > Ap(G′).
If p ≥ 1 and d(u) = d(ui), then we have

Ap
p(G) − Ap

p(G′) =

s∑
i=1

(|d(u) − d(ui)|p − |d(u) − d(ui) − 1|p) + |d(u) − d(w1)|p

+|d(u) − d(v1)|p − |d(u) − d(v1) − 1|p + 1
= −(d(u) − 2) + |d(u) − d(w1)|p + |d(u) − d(v1)|p

−|d(u) − d(v1) − 1|p + 1
> 0.

Thus we have Ap(G) > Ap(G′).
If p > 0 and ∆ = d(u) = 3, then we have

Ap
p(G) − Ap

p(G′) = |d(u) − d(u1)|p − |d(u) − d(u1) − 1|p + |d(u) − d(w1)|p

+|d(u) − d(v1)|p − |d(u) − d(v1) − 1|p + 1
≥ −1 + |3 − d(w1)|p + |3 − d(v1)|p

−|3 − d(v1) − 1|p + 1
= |3 − d(w1)|p + |3 − d(v1)|p − |2 − d(v1)|p

> 0.

Thus we have Ap(G) > Ap(G′).
Combining the above arguments, we have the proof. �

3. Some bounds for the general Albertson index

Theorem 3.1. Let G be a connected graph with m edges. If p > q, then

Ap(G) ≥ m
1
p−

1
q Aq(G)

with equality if and only if G is a regular graph (when G is non-bipartite) or G is a (∆, δ)-semiregular
bipartite graph (when G is bipartite).
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Proof. By Lemma 2.1, we have 1
m

∑
uv∈E(G)

|d(u) − d(v)|p


1
p

≥

 1
m

∑
uv∈E(G)

|d(u) − d(v)|q


1
q

,

that is,
1

m
1
p

Ap(G) ≥
1

m
1
q

Aq(G),

that is,
Ap(G) ≥ m

1
p−

1
q Aq

with equality if and only if |d(u)−d(v)| is a constant for every edge uv in G, that is, G is a regular graph
(when G is non-bipartite) or G is a (∆, δ)-semiregular bipartite graph (when G is bipartite). �

Corollary 3.2. Let G be a connected graph with m edges. Then

Alb(G) ≤
√

m(F − 2M2),

with equality if and only if G is a regular graph (when G is non-bipartite) or G is a (∆, δ)-semiregular
bipartite graph (when G is bipartite).

Theorem 3.3. Let G be a connected graph. If 1
p + 1

q = 1, then

Ap(G)Aq(G) ≥ F − 2M2,

with equality if and only if p = 2, or G is a regular graph (when G is non-bipartite) or G is a (∆, δ)-
semiregular bipartite graph (when G is bipartite).

Proof. For ai = bi = d(u) − d(v) and apply Lemma 2.2. Then

∑
uv∈E(G)

(d(u) − d(v))2 ≤

 ∑
uv∈E(G)

|d(u) − d(v)|p


1
p
 ∑

uv∈E(G)

|d(u) − d(v)|q


1
q

,

that is,
F − 2M2 ≤ Ap(G)Aq(G),

with equality if and only if p = 2, or G is a regular graph (when G is non-bipartite) or G is a (∆, δ)-
semiregular bipartite graph (when G is bipartite). �

Theorem 3.4. Let G be a connected graph with m edges. If p ≥ 1 is an integer, then

Ap(G) ≤ (m − 1)1− 1
p

(
A 1

p
(G)

) 1
p
.

Proof. Let xi = |d(u) − d(v)| in Lemma 2.3. Then ∑
uv∈E(G)

|d(u) − d(v)|p


1
p

≤ (m − 1)1− 1
p

∑
uv∈E(G)

|d(u) − d(v)|
1
p ,

that is,

Ap(G) ≤ (m − 1)1− 1
p

(
A 1

p
(G)

) 1
p
.

�
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Theorem 3.5. Let G be a connected graph with m edges. If p ≥ 1, then

Ap(G) ≥ (m + pAlb(G))
1
p − m

1
p .

If 0 < p < 1, then
Ap(G) ≤ (m + pAlb(G))

1
p − m

1
p .

Proof. Let ai = 1 and bi = |d(u) − d(v)| in Lemma 2.4. Then ∑
uv∈E(G)

(1 + |d(u) − d(v)|)p


1
p

≤ Ap(G) + m
1
p

for p ≥ 1. By Bernoulli inequality, we have

Ap(G) + m
1
p ≥

 ∑
uv∈E(G)

(1 + p|d(u) − d(v)|)


1
p

= (m + pAlb(G))
1
p ,

that is,
Ap(G) ≥ (m + pAlb(G))

1
p − m

1
p .

For 0 < p < 1, by Lemma 2.4 and Bernoulli inequality, we have the proof. �

Theorem 3.6. Let G be a connected graph. If p ≥ 2, then

Ap(G) ≤
√

F − 2M2 (3.1)

with equality if and only if d(u) − d(v) , 0 for unique edge uv and 0 for the other edges in G.

Proof. By Lemma 2.5, we have

Ap(G) ≤ A2(G) =

 ∑
uv∈E(G)

|d(u) − d(v)|2


1
2

=
√
σ(G) =

√
F − 2M2

with equality if and only if d(u) − d(v) , 0 for only one edge uv and 0 for the other edges in G. �

Remark 3.7. There exist many graphs such that the equality in (3.1) holds, the following graphs are
examples (See Figure 2).

H0 H1

Figure 2. Graphs H0 and H1.
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Theorem 3.8. Let G be a connected graph with n vertices. Then

Ap(G) ≤ [Zp(L(G))]
1
p

with equality if and only if G � K1, n−1.

Proof. By definition of Ap(G), we have

Ap(G) =

 ∑
uv∈E(G)

|d(u) − d(v)|p


1
p

=

 ∑
uv∈E(G)

|(d(u) − 1) − (d(v) − 1)|p


1
p

≤

 ∑
uv∈E(G)

(d(u) + d(v) − 2)p


1
p

=

 ∑
v∈V(L(G))

(d(v))p


1
p

= [Zp(L(G))]
1
p

with equality if and only if (d(u) − 1)(d(v) − 1) ≤ 0, that is, d(v) = 1 for every edge uv in G, that is, G
is a star K1, n−1. �

Corollary 3.9. Let G be a connected graph with n vertices and m edges. Then

Alb(G) ≤ Z1(L(G)) = Z2(G) − 2m and σ(G) ≤ Z2(L(G))

with equality if and only if G � K1, n−1.

Theorem 3.10. Let u be a vertex and G be a connected graph. Then

Ap(u ∨G) = [Zp(G) + Ap
p(G)]

1
p ,

where G is the complement of G.

Proof. By definition of u ∨G, we have

Ap(u ∨G) =

 ∑
wv∈E(u∨G)

|d(w) − d(v)|p


1
p

=

 ∑
v∈V(G)

|n − d(v) − 1|p +
∑

wv∈E(G)

|d(w) − d(v)|p


1
p

=

 ∑
v∈V(G)

dp(v) + Ap
p(G)


1
p

= [Zp(G) + Ap
p(G)]

1
p .

�
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Corollary 3.11. Let G be a connected graph with n vertices and m edges. Then

Alb(u ∨G) − Alb(G) = n(n − 1) − 2m,

σ(u ∨G) − σ(G) + Z2(G) = n(n − 1)2 − 4m(n − 1).

Theorem 3.12. Let u be a pendant vertex of a connected graph G with n ≥ 3 vertices. If G + Pt (t ≥ 1)
is the graph by adding a new (pendant) path to u, then

(i) Ap(G + Pt) > Ap(G) for 0 < p < 1.
(ii) Ap(G + Pt) = Ap(G) for p = 1.
(iii) Ap(G + Pt) < Ap(G) for p > 1.

Proof. Let v be the unique neighbour of u in G. Since ap +bp > (a+b)p for a > 0, b > 0 and 0 < p < 1,
we have

Ap
p(G + Pt) =

∑
rs∈E(G+e)

|d(r) − d(s)|p

= (d(v) − 2)p + (2 − 1)p +
∑

rs∈E(G),r,s,u

|d(r) − d(s)|p

> (d(v) − 1)p +
∑

rs∈E(G),r,s,u

|d(r) − d(s)|p

= Ap
p(G),

for 0 < p < 1. Thus Ap(G + Pt) > Ap(G). By a similar reasoning as above, we have the proof of (ii)
and (iii). �

Corollary 3.13. Let u be a pendant vertex of a connected graph G with n ≥ 3 vertices. If G + Pt (t ≥ 1)
is the graph by adding a new (pendant) path to u, then

σ(G + Pt) < σ(G).

4. The general Albertson index of trees

Theorem 4.1. Let Tn ∈ Tn. Then

2
1
p ≤ Ap(Tn) ≤ (n − 2)(n − 1)

1
p .

The lower bound is attained if and only if Tn � Pn. The upper bound is attained if and only if Tn �

K1, n−1.

Proof. If ∆ ≥ 3, then Tn has at least three pendant vertices. Thus Ap(Tn) > 3
1
p > 2

1
p = Ap(Pn). In

addition, Ap(Tn) ≤ (∆ − 1)(n − 1)
1
p ≤ (n − 2)(n − 1)

1
p = Ap(K1, n−1). �
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T 1 T 2 T ′2 (i ≥ 3) T 3 (i ≥ 3)

v1 v2 v3

vn

v1 v2 v3

vn

v1 v2 vi

vn

v1 v2 vi

vn

Figure 3. Graphs T 1, T 2, T ′2, T 3.

Theorem 4.2. Let n ≥ 10, Tn ∈ Tn − {Pn}, T 1 and T 3 shown as in Figure 3.
(i) If p > 1, then Ap(Tn) ≥ 6

1
p with equality if and only if Tn � T 1.

(ii) If p = 1, then Ap(Tn) ≥ 6 with equality if and only if Tn is a spider with ∆ = 3.
(iii) If 0 < p < 1, then Ap(Tn) ≥ (2p+1 + 2)

1
p with equality if and only if Tn � T 3.

Proof. Let d1 ≥ d2 ≥ d3 ≥ · · · ≥ dn be the degree sequence of Tn, and let k be the number of non-
pendant edges uv with d(u) , d(v). Then

Ap
p(Tn) =

∑
uv∈E(G)

|d(u) − d(v)|p ≥ d1 + (d2 − 2) + (d3 − 2) + k.

If d1 ≥ 7, then Ap
p(Tn) > 7.

If d1 ≥ 6 and d2 ≥ 3, then Ap
p(Tn) > 6 + (3 − 2) = 7.

If d1 ≥ 6 and d2 = 2, then Ap
p(Tn) > 6 + 1 = 7.

If d1 = d2 = 5, then Ap
p(Tn) > 5 + (5 − 2) = 8.

If d1 = 5 and d2 = 4, then Ap
p(Tn) > 5 + (4 − 2) = 7.

If d1 = 5 and d2 = 3, then Ap
p(Tn) > 5 + (3 − 2) + 1 = 7.

If d1 = 5 and d2 = 2, then Ap
p(Tn) =



4p+1 + 3p + 1,
3 · 4p + 2 · 3p + 2,
2 · 4p + 3p+1 + 3,
4p + 4 · 3p + 4,
5 · 3p + 5.

Thus Ap
p(Tn) > 6.

If d1 = d2 = 4, then Ap
p(Tn) ≥ 4 + (4 − 2) + 1 > 7.

If d1 = 4 and d2 = d3 = d4 = 3, then Ap
p(Tn) > 4 + (3 − 2) + (3 − 2) + (3 − 2) = 7.

If d1 = 4 and d2 = d3 = 3, then Ap
p(Tn) > 4 + (3 − 2) + (3 − 2) + 1 = 7.

If d1 = 4 and d2 = 3, then Ap
p(Tn) > 4 + (3 − 2) + 1 = 6.

If d1 = 4 and d2 = 2, then Ap
p(Tn) =


3p+1 + 2p + 1,
2 · 3p + 2p+1 + 2,
3p + 3 · 2p + 3,
4 · 2p + 4.

If d1 = 3, we can applying Lemma 2.6 repeatedly to the vertices with degree three. Thus the
minimum value of Tn has four cases, shown as in Figure 3. By direct computing, we have

Ap
p(T 1) = 2p+1 + 2, Ap

p(T 2) = Ap
p(T ′2) = 2p + 4, Ap

p(T 3) = 6.
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By comparing the above cases, we have that T1, T 2, T ′2 and T 3 are the candidates with minimum
general Albertson index among Tn − {Pn}. Further, we have Ap

p(T 1) > Ap
p(T 2) = Ap

p(T ′2) > Ap
p(T 3) for

p > 1, Ap
p(T 1) = Ap

p(T 2) = Ap
p(T ′2) = Ap

p(T 3) for p = 1, and Ap
p(T 1) < Ap

p(T 2) = Ap
p(T ′2) < Ap

p(T 3) for
0 < p < 1. �

Theorem 4.3. Let Tn be a tree with n vertices. If p ≥ 1, then

Ap(Tn) ≥ (∆ε1−p(v∆))
1
p (∆ − 1),

where v∆ is a vertex of the maximum degree.

Proof. Let v∆v1v2 . . . vl1 be the path from the vertex v∆ to pendant vertex vl1 . Then d(v∆, vl1) = l1. Let
f (x) = xp. Since f (x) is a increasing and convex function for x > 0 and p ≥ 1, we have

1
l1

( f (|d(v∆) − d(v1)|) + f (|d(v1) − d(v2)|) + · · · + f (|vl1−1 − d(vl1)|))

≥ f
(
|d(v∆) − d(v1)| + |d(v1) − d(v2)| + · · · + |vl1−1 − d(vl1)|

l1

)
≥ f

(
(d(v∆) − d(v1) + d(v1) − d(v2) + · · · + vl1−1 − d(vl1))

l1

)
= f

(
∆ − 1

l1

)
,

that is,
|d(v∆) − d(v1)|p + · · · + |vl1−1 − d(vl1)|

p ≥ l1−p
1 (∆ − 1)p.

Since Tn has at least ∆ pendant vertices, we have

Ap(Tn) ≥ (l1−p
1 + l1−p

2 + · · · + l1−p
∆

)
1
p (∆ − 1),

where l1, l2, . . . , l∆ is the distance from maximum degree vertex v∆ to pendant vertex vli , 1 ≤ i ≤ ∆.
Note that ε(v∆) = maxv∈V(G) d(v∆, v) ≥ li for 1 ≤ i ≤ ∆. Thus we have Ap(Tn) ≥ (∆ε1−p(v∆))

1
p (∆−1). �

Corollary 4.4. Let Tn be a tree with n vertices. Then

Alb(Tn) ≥ ∆(∆ − 1)

with equality if and only if G is a spider.

5. The general Albertson index of generalized Bethe trees and Kragujevac trees

In this section, we give the calculation formula of the general Albertson index of generalized Bethe
trees and Kragujevac trees which are a wide range of applications in the field of mathematics [22, 25],
cheminformatics [15, 27, 29], statistical mechanics [19], etc.

A generalized Bethe tree [23] is a rooted tree in which vertices of the same level (height) have the
same degree. We usually use Bk to denote the generalized Bethe tree with k levels with the root at the
level 1. More specifically, Bk, d denotes a Bethe tree [16] of k levels with the root degree d, and the
vertices between the level 2 and k − 1 all have degree d + 1. A regular dendrimer tree [14] Tk, d is a
special case of Bk, where the degrees of all internal vertices are d.
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Theorem 5.1. Let Bk be the generalized Bethe tree where the degree of each level is d1 ≥ d2 ≥ · · · ≥

dk−1, dk = 1. Then

Ap(Bk) = d
1
p

1

|d1 − d2|
p +

k∑
i=2

|di − di−1|
p

i∏
j=2

(d j − 1)


1
p

.

Proof. By definition of the generalized Bethe tree, we have

Ap
p(Bk) =

∑
uv∈E(G)

|d(u) − d(v)|p

= d1[|d1 − d2|
p + |d2 − d3|

p(d2 − 1) + |d3 − d4|
p(d3 − 1)(d2 − 1) + · · ·

+|dk−1 − dk|
p(dk−1 − 1) · · · (d2 − 1)]

= d1

|d1 − d2|
p +

k∑
i=2

|di − di−1|
p

i∏
j=2

(d j − 1)

 .
Thus we have the proof. �

Corollary 5.2. Let Bk, d and Tk, d be the Bethe tree and a regular dendrimer tree, respectively. Then

Ap(Bk, d) = (d + dp+k−1)
1
p and Ap(Tk, d) = [d(d − 1)p+k−2]

1
p .

Let P3 be the 3-vertex tree, rooted at one of its terminal vertices, see Figure 4. For k = 2, 3, . . .,
construct the rooted tree Rk by identifying the roots of k copies of P3. The vertex obtained by identi-
fying the roots of P3-trees is the root of Rk. Let d ≥ 2 be an integer and γ1, γ2, . . . , γd be rooted trees,
i.e., γ1, γ2, . . . , γd ∈ {R2,R3, . . .}. A Kragujevac tree KT [15] is a tree possessing a vertex of degree
d, adjacent to the roots of γ1, γ2, . . . , γd. This vertex is said to be the central vertex of KT , whereas d
is the degree of KT . The subgraphs γ1, γ2, . . . , γd are the branches of KT . Recall that some (or all)
branches of KT may be mutually isomorphic.

P3 R2 R3 Rk

Figure 4. Graphs P3, R2, R3, Rk.

Theorem 5.3. Let KT be a Kragujevac tree with n vertices and γi � Rki , i = 1, 2, . . . , d. Then

Ap(KT ) =

n − d − 1
2

+

d∑
i=1

(ki(ki − 1)p + |ki − d + 1|p)


1
p

.

Proof. Since 1 +
d∑

i=1
(2ki + 1) = n, by definition of the Kragujevac tree, we have

Ap
p(KT ) =

∑
uv∈E(G)

|d(u) − d(v)|p
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=

d∑
i=1

[ki + ki(ki + 1 − 2)p + |d − (ki + 1)p|]

=
n − d − 1

2
+

d∑
i=1

(ki(ki − 1)p + |ki − d + 1|p).

Thus we have the proof. �

Corollary 5.4. Let KT be a Kragujevac tree with n vertices and γi � Rk, i = 1, 2, . . . , d. Then

Ap(KT ) =

[
n − d − 1

2
+ dk(k − 1)p + d|k − d + 1|p

] 1
p

.

6. Conclusions

In this paper, we propose the general Albertson irregularity index which extends classical Al-
bertson irregularity index and σ-index. The tight bounds of the general Albertson irregularity in-
dex are established. Additionally, the general Albertson irregularity index of trees are studied. In
2014, the total irregularity of a graph G, introduced by Abdo, Brandt and Dimitrov [2], is defined
as irrt(G) =

∑
{u,v}⊆V(G) |d(u) − d(v)|. For measuring the non-self-centrality of a graph, the non-self-

centrality number of G was introduced in [30] as N(G) =
∑
{u,v}⊆V(G) |ε(u) − ε(v)|. Based on these, we

can propose the general total irregularity and the general non-self-centrality number of a graph G as
follows:

irrp(G) =

 ∑
{u,v}⊆V(G)

|d(u) − d(v)|p


1
p

and Np(G) =

 ∑
{u,v}⊆V(G)

|ε(u) − ε(v)|p


1
p

,

where the summation goes over all the unordered pairs of vertices in G. The research interaction among
Ap(G), irrp(G) and Np(G) will be carried out in the near future.
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