Research article

Two-uniqueness of rational ghost soliton solution and well-posedness of perturbed Einstein-Yang-Mills equations

  • Received: 08 May 2021 Accepted: 12 August 2021 Published: 19 August 2021
  • MSC : 53C25, 53C26, 58J60

  • In this paper, we discuss the uniqueness and existence of local solutions for the perturbed static, spherically symmetric Einstein-Yang-Mills (EYM) equations with gauge group $ SU(2) $. Moreover, we show that the rational expression solutions to the equations only happened in traditional Schwarzschild solutions and Reissner-Nordstrom solutions. From these results, we can infer that there is no rational ghost soliton solution for the EYM equations.

    Citation: Wenjing Song, Haiyun Deng, Ganshan Yang. Two-uniqueness of rational ghost soliton solution and well-posedness of perturbed Einstein-Yang-Mills equations[J]. AIMS Mathematics, 2021, 6(11): 12065-12076. doi: 10.3934/math.2021699

    Related Papers:

  • In this paper, we discuss the uniqueness and existence of local solutions for the perturbed static, spherically symmetric Einstein-Yang-Mills (EYM) equations with gauge group $ SU(2) $. Moreover, we show that the rational expression solutions to the equations only happened in traditional Schwarzschild solutions and Reissner-Nordstrom solutions. From these results, we can infer that there is no rational ghost soliton solution for the EYM equations.



    加载中


    [1] R. Bartnik, M. John, Particlelike solutions of the Einstein-Yang-Mills equations, Phys. Rev. Lett., 61 (1988), 141–144. doi: 10.1103/PhysRevLett.61.141
    [2] J. E. Baxter, On the existence of topological dyons and dyonic black holes in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups, J. Math. Phys., 59 (2018), 052502. doi: 10.1063/1.5000349
    [3] F. Bethuel, P. Gravejat, J. C. Saut, D. Smets, Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana U. Math. J., 57 (2008), 2611–2642. doi: 10.1512/iumj.2008.57.3632
    [4] A. M. Kamchatnov, A. Gammal, F. K. Abdullaev, R. A. Kraenkel, Formation of soliton trains in Bose-Einstein condensates as a nonlinear Fresnel diffraction of matter waves, Phys. Lett. A, 319 (2003), 406–412. doi: 10.1016/j.physleta.2003.10.050
    [5] R. Radha, V. R. Kumar, M. Wadati, Line-soliton dynamics and stability of Bose-Einstein condensates in (2+1) Gross-Pitaevskii equation, J. Math. Phys., 51 (2010), 043507. doi: 10.1063/1.3372625
    [6] J. A. Smoller, A. G. Wasserman, Regular solutions of the Einstein-Yang-Mills equations, J. Math. Phys., 36 (1995), 4301–4323. doi: 10.1063/1.530963
    [7] J. Smoller, A. Wasserman, Reissner-Nordstrom-like solutions of the $SU(2)$ Einstein-Yang-Mills equations, J. Math. Phys., 38 (1997), 6522–6559. doi: 10.1063/1.532224
    [8] J. A. Smoller, A. G. Wasserman, Extendability of solutions of the Einstein-Yang-Mills equations, Commun. Math. Phys., 194 (1998), 707–732. doi: 10.1007/s002200050375
    [9] J. A. Smoller, A. G. Wasserman, S. T. Yau, Existence of black hole solutions for the Einstein-Yang-Mills equations, Commun. Math. Phys., 154 (1993), 377–401. doi: 10.1007/BF02097002
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2038) PDF downloads(139) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog