Research article

Exact divisibility by powers of the integers in the Lucas sequences of the first and second kinds

  • Received: 15 April 2021 Accepted: 05 August 2021 Published: 12 August 2021
  • MSC : 11B39, 11B37, 11A05

  • Lucas sequences of the first and second kinds are, respectively, the integer sequences $ (U_n)_{n\geq0} $ and $ (V_n)_{n\geq0} $ depending on parameters $ a, b\in\mathbb{Z} $ and defined by the recurrence relations $ U_0 = 0 $, $ U_1 = 1 $, and $ U_n = aU_{n-1}+bU_{n-2} $ for $ n\geq2 $, $ V_0 = 2 $, $ V_1 = a $, and $ V_n = aV_{n-1}+bV_{n-2} $ for $ n\geq2 $. In this article, we obtain exact divisibility results concerning $ U_n^k $ and $ V_n^k $ for all positive integers $ n $ and $ k $. This and our previous article extend many results in the literature and complete a long investigation on this problem from 1970 to 2021.

    Citation: Kritkhajohn Onphaeng, Prapanpong Pongsriiam. Exact divisibility by powers of the integers in the Lucas sequences of the first and second kinds[J]. AIMS Mathematics, 2021, 6(11): 11733-11748. doi: 10.3934/math.2021682

    Related Papers:

  • Lucas sequences of the first and second kinds are, respectively, the integer sequences $ (U_n)_{n\geq0} $ and $ (V_n)_{n\geq0} $ depending on parameters $ a, b\in\mathbb{Z} $ and defined by the recurrence relations $ U_0 = 0 $, $ U_1 = 1 $, and $ U_n = aU_{n-1}+bU_{n-2} $ for $ n\geq2 $, $ V_0 = 2 $, $ V_1 = a $, and $ V_n = aV_{n-1}+bV_{n-2} $ for $ n\geq2 $. In this article, we obtain exact divisibility results concerning $ U_n^k $ and $ V_n^k $ for all positive integers $ n $ and $ k $. This and our previous article extend many results in the literature and complete a long investigation on this problem from 1970 to 2021.



    加载中


    [1] A. Benjamin, J. Rouse, When does $F_m^L$ divide $F_n$? A combinatorial solution, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, 194, Congressus Numerantium, 2009, 53–58.
    [2] Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math., 163 (2006), 969–1018. doi: 10.4007/annals.2006.163.969
    [3] P. Cubre, J. Rouse, Divisibility properties of the Fibonacci entry point, Proc. Amer. Math. Soc., 142 (2014), 3771–3785. doi: 10.1090/S0002-9939-2014-12269-6
    [4] V. E. Hoggatt Jr., M. Bicknell-Johnson, Divisibility by Fibonacci and Lucas squares, Fibonacci Quart., 15 (1977), 3–8.
    [5] Y. Matijasevich, Enumerable Sets are Diophantine, Proc. Academy Sci. USSR, 11 (1970), 354–358.
    [6] Y. Matijasevich, My collaboration with Julia Robison, Math. Intell., 14 (1992), 38–45. doi: 10.1007/BF03024472
    [7] Y. Matijasevich, Hilbert's Tenth Problem, MIT Press, 1996.
    [8] K. Onphaeng, P. Pongsriiam, Exact divisibility by powers of the integers in the Lucas sequence of the first kind, AIMS Math., 5 (2020), 6739–6748. doi: 10.3934/math.2020433
    [9] K. Onphaeng, P. Pongsriiam, Subsequences and divisibility by powers of the Fibonacci numbers, Fibonacci Quart., 52 (2014), 163–171.
    [10] K. Onphaeng, P. Pongsriiam, The converse of exact divisibility by powers of the Fibonacci and Lucas numbers, Fibonacci Quart., 56 (2018), 296–302.
    [11] C. Panraksa, A. Tangboonduangjit, $p$-adic valuation of Lucas iteration sequences, Fibonacci Quart., 56 (2018), 348–353.
    [12] A. Patra, G. K. Panda, T. Khemaratchatakumthorn, Exact divisibility by powers of the balancing and Lucas-balancing numbers, Fibonacci Quart., 59 (2021), 57–64.
    [13] P. Phunphayap, P. Pongsriiam, Explicit formulas for the $p$-adic valuations of Fibonomial coefficients, J. Integer Seq., 21 (2018), Article 18.3.1.
    [14] P. Phunphayap, P. Pongsriiam, Explicit formulas for the $p$-adic valuations of Fibonomial coefficients II, AIMS Math., 5 (2020), 5685–5699. doi: 10.3934/math.2020364
    [15] P. Pongsriiam, Exact divisibility by powers of the Fibonacci and Lucas numbers, J. Integer Seq., 17 (2014), Article 14.11.2.
    [16] P. Pongsriiam, Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation, Commun. Korean Math. Soc., 32 (2017), 511–522.
    [17] M. K. Sahukar, G. K. Panda, Diophantine equations with balancing-like sequences associated to Brocard-Ramanujan-type problem, Glas Mat., 54 (2019), 255–270. doi: 10.3336/gm.54.2.01
    [18] C. Sanna, The $p$-adic valuation of Lucas sequences, Fibonacci Quart., 54 (2016), 118–124.
    [19] J. Seibert, P. Trojovský, On divisibility of a relation of the Fibonacci numbers, Int. J. Pure Appl. Math., 46 (2008), 443–448.
    [20] C. L. Stewart, On divisors of Lucas and Lehmer numbers, Acta Math., 211 (2013), 291–314. doi: 10.1007/s11511-013-0105-y
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1774) PDF downloads(92) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog