Mathematics

Research article

Exact divisibility by powers of the integers in the Lucas sequences of the first and second kinds

Kritkhajohn Onphaeng and Prapanpong Pongsriiam*

Department of Mathematics, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand

* Correspondence: Email: prapanpong@gmail.com, pongsriiam_p@silpakorn.edu.

Abstract

Lucas sequences of the first and second kinds are, respectively, the integer sequences $\left(U_{n}\right)_{n \geq 0}$ and $\left(V_{n}\right)_{n \geq 0}$ depending on parameters $a, b \in \mathbb{Z}$ and defined by the recurrence relations $U_{0}=0$, $U_{1}=1$, and $U_{n}=a U_{n-1}+b U_{n-2}$ for $n \geq 2, V_{0}=2, V_{1}=a$, and $V_{n}=a V_{n-1}+b V_{n-2}$ for $n \geq 2$. In this article, we obtain exact divisibility results concerning U_{n}^{k} and V_{n}^{k} for all positive integers n and k. This and our previous article extend many results in the literature and complete a long investigation on this problem from 1970 to 2021.

Keywords: Lucas sequence; Lucas number; Fibonacci number; exact divisibility; p-adic valuation Mathematics Subject Classification: 11B39, 11B37, 11A05

1. Introduction

Throughout this article, let a and b be relatively prime integers and let $\left(U_{n}\right)_{n \geq 0}$ and $\left(V_{n}\right)_{n \geq 0}$ be the Lucas sequences of the first and second kinds which are defined by the recurrence relations

$$
\begin{gathered}
U_{0}=0, U_{1}=1, U_{n}=a U_{n-1}+b U_{n-2} \text { for } n \geq 2, \\
V_{0}=2, V_{1}=a, \text { and } V_{n}=a V_{n-1}+b V_{n-2} \text { for } n \geq 2 .
\end{gathered}
$$

To avoid triviality, we also assume that $b \neq 0$ and α / β is not a root of unity where α and β are the roots of the characteristic polynomial $x^{2}-a x-b$. In particular, this implies that $\alpha \neq \beta, \alpha \neq-\beta$, the discriminant $D=a^{2}+4 b \neq 0, U_{n} \neq 0$, and $V_{n} \neq 0$ for all $n \geq 1$. If $a=b=1$, then $\left(U_{n}\right)_{n \geq 0}$ reduces to the sequence of Fibonacci numbers F_{n}; if $a=6$ and $b=-1$, then $\left(U_{n}\right)_{n \geq 0}$ becomes the sequence of balancing numbers; if $a=2$ and $b=1$, then $\left(U_{n}\right)_{n \geq 0}$ is the sequence of Pell numbers; and many other famous integer sequences are just special cases of the Lucas sequences of the first and second kinds.

The divisibility by powers of the Fibonacci numbers has attracted some attentions because it is used in Matijasevich's solution to Hilbert's 10th problem [5-7]. More precisely, Matijasevich show that

$$
\begin{equation*}
F_{n}^{2} \mid F_{n m} \quad \text { if and only if } \quad F_{n} \mid m \tag{1.1}
\end{equation*}
$$

From that point, Hoggatt and Bicknell-Johnson [4], Benjamin and Rouse [1], Seibert and Trojovský [19], Pongsriiam [15], Onphaeng and Pongsriiam [9, 10], Panraksa and Tangboonduangjit [11], and Patra, Panda, and Khemaratchatakumthorn [12] have made some contributions on the extensions of (1.1). For more details about the timeline and the development of this problem, we refer the reader to the introduction of our previous article [8]. In fact, the most general results in this direction has recently been given by us [8] as follows.
Theorem 1. [8, Theorem 10] Let $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1, n \geq 2$, and $U_{n}^{k} \| m$. Then
(i) if a is odd and b is even, then $U_{n}^{k+1} \| U_{n m}$;
(ii) if a is even and b is odd, then $U_{n}^{k+1} \| U_{n m}$;
(iii) if a and b are odd and $n \not \equiv 3(\bmod 6)$, then $U_{n}^{k+1} \| U_{n m}$;
(iv) if a and b are odd, $n \equiv 3(\bmod 6)$, and $\frac{U_{n}^{k+1}}{2} \nmid m$, then $U_{n}^{k+1} \| U_{n m}$;
(v) if a and b are odd, $n \equiv 3(\bmod 6), \left.\frac{U_{n}^{k+1}}{2} \right\rvert\, m$, and $2 \| a^{2}+3 b$, then $U_{n}^{k+1} \| U_{n m}$;
(vi) if a and b are odd, $n \equiv 3(\bmod 6)$, $\left.\frac{U_{n}^{k+1}}{2} \right\rvert\, m$, and $4 \mid a^{2}+3 b$, then $U_{n}^{k+t+1} \| U_{n m}$, where

$$
\begin{aligned}
t & =\min \left(\left\{v_{2}\left(U_{6}\right)-2\right\} \cup\left\{y_{p}-k \mid p \text { is an odd prime factor of } U_{n}\right\}\right) \text { and } \\
y_{p} & =\left\lfloor\frac{v_{p}(m)}{v_{p}\left(U_{n}\right)}\right\rfloor \text { for each odd prime } p \text { dividing } U_{n} .
\end{aligned}
$$

Theorem 2. [8, Theorem 12] Let $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1, n \geq 2$, and $U_{n}^{k+1} \| U_{n m}$. Then
(i) if a is odd and b is even, then $U_{n}^{k} \| m$;
(ii) if a is even and b is odd, then $U_{n}^{k} \| m$;
(iii) if a and b are odd and $n \not \equiv 3(\bmod 6)$, then $U_{n}^{k} \| m$;
(iv) if a and b are odd, $n \equiv 3(\bmod 6)$, and $2 \| a^{2}+3 b$, then $U_{n}^{k} \| m$;
(v) if a and b are odd, $n \equiv 3(\bmod 6), 4 \mid a^{2}+3 b$, and $v_{2}(m) \geq k$, then $U_{n}^{k} \| m$;
(vi) if a and b are odd, $n \equiv 3(\bmod 6), 4 \mid a^{2}+3 b$, and $v_{2}(m)<k$, then

$$
m \text { is even, } v_{2}(m) \geq k+1-v_{2}\left(a^{2}+3 b\right) \text {, and } U_{n}^{v_{2}(m)} \| m
$$

For other related and recent results on Fibonacci, Lucas, balancing, and Lucas-balancing numbers, see for example in $[3,13,14,16,17,20]$ and references there in.

In this article, we extend Theorems 1 and 2 to the case of V_{n} and the mix of U_{n} and V_{n}. For example, we obtain in Theorem 18 that if a and m are even, b is odd, and $V_{n}^{k+1} \| U_{n m}$, then $2 \mid n$ implies $V_{n}^{\min \left(k, v_{2}(m)\right)} \| m$; while $2 \nmid n$ implies $V_{n}^{k} \mid m$ and the exponent k can be replaced by $k+1$ if and only if $\left.\frac{V_{n}^{k+2}}{2} \right\rvert\, U_{n m}$.

2. Preliminaries and lemmas

In this section, we recall some definition and well known results, and give some useful lemmas for the reader's convenience. The order (or the rank) of appearance of $n \in \mathbb{N}$ in the Lucas sequence
$\left(U_{n}\right)_{n \geq 0}$ is defined as the smallest positive integer m such that $n \mid U_{m}$ and is denoted by $\tau(n)$. The exact divisibility $m^{k} \| n$ means that $m^{k} \mid n$ and $m^{k+1} \nmid n$. The letter p is always a prime. For $n \in \mathbb{N}$, the p-adic valuation of n, denoted by $v_{p}(n)$ is the power of p in the prime factorization of n. We sometimes write the expression such as $a|b| c=d$ to mean that $a|b, b| c$, and $c=d$. For each $x \in \mathbb{R}$, we write $\lfloor x\rfloor$ to denote the largest integer less than or equal to x. So $\lfloor x\rfloor \leq x<\lfloor x\rfloor+1$. We let $D=a^{2}+4 b$ be the discriminant and let α and β be the roots of the characteristic polynomial $x^{2}-a x-b$. Then it is well known that if $D \neq 0$, then the Binet formula

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } V_{n}=\alpha^{n}+\beta^{n} \text { holds for all } n \geq 0 .
$$

Next, we recall Sanna's result [18] on the p-adic valuation of the Lucas sequence of the first kind.
Lemma 3. [18, Theorem 1.5] Let p be a prime number such that $p \nmid b$. Then, for each positive integer n,

$$
v_{p}\left(U_{n}\right)= \begin{cases}v_{p}(n)+v_{p}\left(U_{p}\right)-1 & \text { if } p \mid D \text { and } p \mid n, \\ 0 & \text { if } p \mid D \text { and } p \nmid n, \\ v_{p}(n)+v_{p}\left(U_{p \tau(p)}\right)-1 & \text { if } p \nmid D, \tau(p) \mid n, \text { and } p \mid n, \\ v_{p}\left(U_{\tau(p)}\right) & \text { if } p \nmid D, \tau(p) \mid n \text {, and } p \nmid n, \\ 0 & \text { if } p \nmid D \text { and } \tau(p) \nmid n .\end{cases}
$$

In particular, if p is an odd prime such that $p \nmid b$, then, for each positive integer n,

$$
v_{p}\left(U_{n}\right)= \begin{cases}v_{p}(n)+v_{p}\left(U_{p}\right)-1 & \text { if } p \mid D \text { and } p \mid n, \\ 0 & \text { if } p \mid D \text { and } p \nmid n, \\ v_{p}(n)+v_{p}\left(U_{\tau(p))}\right) & \text { if } p \nmid D \text { and } \tau(p) \mid n, \\ 0 & \text { if } p \nmid D \text { and } \tau(p) \nmid n .\end{cases}
$$

From Lemma 3, and the fact that $V_{n}=U_{2 n} / U_{n}$, we easily obtain the following result.
Lemma 4. If p is an odd prime and $p \nmid b$. Then, for each positive integer n,

$$
v_{p}\left(V_{n}\right)= \begin{cases}v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) & \text { if } p \nmid D, \tau(p) \nmid n \text { and } \tau(p) \mid 2 n, \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. This follows from the application of Lemma 3, a straightforward calculation, and the fact that $v_{p}\left(V_{n}\right)=v_{p}\left(\frac{U_{2 n}}{U_{n}}\right)=v_{p}\left(U_{2 n}\right)-v_{p}\left(U_{n}\right)$.

Next, we give some old and new lemmas that are needed in the proof of main theorems.
Lemma 5. Let $n \geq 1$ and $(a, b)=1$. If $p \mid U_{n}$ or $p \mid V_{n}$, then $p \nmid b$. Consequently, $\left(U_{n}, b\right)=\left(V_{n}, b\right)=1$ for all $n \geq 1$.
Proof. The case for U_{n} is already given in [8, Lemma 7]. So suppose by way of contradiction that $p \mid V_{n}$ and $p \mid b$. Since $V_{n}=a V_{n-1}+b V_{n-2}$ and $(a, b)=1$, we obtain $p \mid V_{n-1}$. Repeating this argument, we see that $p \mid V_{m}$ for $1 \leq m \leq n$. In particular, $p \mid V_{1}=a$ contradicting $(a, b)=1$. So if $p \mid V_{n}$, then $p \nmid b$, and the proof is complete.

Lemma 6. [8, Lemma 8] Let a and b be odd, $(a, b)=1$, and $v_{2}\left(U_{6}\right) \geq v_{2}\left(U_{3}\right)+2$. Then $v_{2}\left(U_{3}\right)=1$.
For convenience, we also calculate the 2-adic valuation of U_{n} and V_{n} as follows.
Lemma 7. Assume that a is odd, b is even, and $n \geq 1$. Then $v_{2}\left(U_{n}\right)=v_{2}\left(V_{n}\right)=0$.
Proof. Since $U_{1}=1$ and $U_{2}=a$ are odd, and $U_{r}=a U_{r-1}+b U_{r-2} \equiv U_{r-1}(\bmod 2)$ for $r \geq 3$, it follows by induction that U_{n} is odd. Since $V_{n}=\frac{U_{2 n}}{U_{n}}, V_{n}$ is also odd. This proves this lemma.

Lemma 8. Assume that a is even, b is odd, and $n \geq 1$. Then

$$
\begin{aligned}
& v_{2}\left(U_{n}\right)= \begin{cases}v_{2}(n)+v_{2}(a)-1 & \text { if } 2 \mid n, \\
0 & \text { if } 2 \nmid n,\end{cases} \\
& v_{2}\left(V_{n}\right)= \begin{cases}1 & \text { if } 2 \mid n, \\
v_{2}(a) & \text { if } 2 \nmid n,\end{cases}
\end{aligned}
$$

Proof. Since $2 \mid D$, we obtain by Lemma 3 that for each $n \in \mathbb{N}, v_{2}\left(U_{n}\right)=v_{2}(n)+v_{2}\left(U_{2}\right)-1$ if $2 \mid n$ and $v_{2}\left(U_{n}\right)=0$ if $2 \nmid n$. Since $U_{2}=a$, the formula for $v_{2}\left(U_{n}\right)$ is verified. Then $v_{2}\left(V_{n}\right)$ can be obtained from a straightforward calculation and the fact that $V_{n}=\frac{U_{2 n}}{U_{n}}$. This completes the proof.

Lemma 9. Assume that a and b are odd, and $n \geq 1$. Then

$$
\begin{aligned}
& v_{2}\left(U_{n}\right)= \begin{cases}v_{2}(n)+v_{2}\left(U_{6}\right)-1 & \text { if } n \equiv 0 \quad(\bmod 6), \\
v_{2}\left(U_{3}\right) & \text { if } n \equiv 3 \quad(\bmod 6), \\
0 & \text { if } n \not \equiv 0 \quad(\bmod 3),\end{cases} \\
& v_{2}\left(V_{n}\right)=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 0 & (\bmod 6), \\
v_{2}\left(U_{6}\right)-v_{2}\left(U_{3}\right) & \text { if } n \equiv 3 & (\bmod 6), \\
0 & \text { if } n \not \equiv 0 & (\bmod 3),
\end{array}\right.
\end{aligned}
$$

Proof. Since U_{1} and U_{2} are odd, and $U_{3}=a^{2}+b$ is even, we have $\tau(2)=3$. In addition, $2 \nmid D$. Furthermore, $3 \mid n$ and $2 \mid n$ if and only if $n \equiv 0(\bmod 6) ; 3 \mid n$ and $2 \nmid n$ if and only if $n \equiv 3(\bmod 6)$. Then applying Lemma 3 and the fact that $V_{n}=\frac{U_{2 n}}{U_{n}}$, we obtain the desired result.

3. Main results

We begin with the simplest theorem of this paper.
Theorem 10. Assume that $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1$, and m is odd. Then
(i) if $V_{n}^{k} \mid m$, then $V_{n}^{k+1} \mid V_{n m}$;
(ii) if $V_{n}^{k} \| m$, then $V_{n}^{k+1} \| V_{n m}$;
(iii) if $V_{n}^{k} \mid V_{n m}$, then $V_{n}^{k-1} \mid m$;
(iv) if $V_{n}^{k} \| V_{n m}$, then $V_{n}^{k-1} \| m$.

Proof. We use Lemma 5 without reference. For (i), assume that $V_{n}^{k} \mid m$. Since m is odd, V_{n} is also odd, and so $v_{2}\left(V_{n}^{k+1}\right)=0$. If $p>2$ and $p \mid V_{n}$, then $p \nmid b$ and we obtain by Lemma 4 that

$$
\begin{aligned}
v_{p}\left(V_{n m}\right) & =v_{p}(m n)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) \\
& \geq v_{p}\left(V_{n}^{k}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+1}\right) .
\end{aligned}
$$

Therefore $v_{p}\left(V_{n m}\right) \geq v_{p}\left(V_{n}^{k+1}\right)$ for all primes p dividing V_{n}. This implies $V_{n}^{k+1} \mid V_{n m}$.
For (ii), assume that $V_{n}^{k} \| m$. By (i), it is enough to show that $V_{n}^{k+2} \nmid V_{n m}$. Since $V_{n}^{k+1} \nmid m$, there exists a prime p dividing V_{n} such that $v_{p}\left(V_{n}^{k+1}\right)>v_{p}(m)$. Here we remark that the letter p in the proof of (i) and in the proof of (ii) may be different or may be the same. We believe that there is no ambiguity since (i) is already done. Now since $V_{n}^{k} \mid m$ and m is odd, V_{n} is also odd, and so $v_{2}\left(V_{n}^{k+1}\right)=v_{2}(m)=0$. Therefore p is odd. By Lemma 4, we obtain

$$
\begin{aligned}
v_{p}\left(V_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right) & =v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}(m)+v_{p}\left(V_{n}\right)<v_{p}\left(V_{n}^{k+1}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+2}\right) .
\end{aligned}
$$

This shows that $V_{n}^{k+2} \nmid V_{n m}$, as required.
For (iii), assume that $V_{n}^{k} \mid V_{n m}$. We show that $v_{p}\left(V_{n}^{k-1}\right) \leq v_{p}(m)$ for all primes p dividing V_{n}. If p is odd and $p \mid V_{n}$, then we apply Lemma 4 to obtain that

$$
\begin{aligned}
v_{p}\left(V_{n}\right)+v_{p}\left(V_{n}^{k-1}\right)=v_{p}\left(V_{n}^{k}\right) \leq v_{p}\left(V_{n m}\right) & =v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}(m)+v_{p}\left(V_{n}\right),
\end{aligned}
$$

and so $v_{p}\left(V_{n}^{k-1}\right) \leq v_{p}(m)$. It remains to show that $v_{2}\left(V_{n}^{k-1}\right) \leq v_{2}(m)$. If a is odd and b is even, then it follows from Lemma 7 that $v_{2}\left(V_{n}^{k-1}\right)=0 \leq v_{2}(m)$. Recall that $(a, b)=1$, so a and b cannot be both even. So we have the following two remaining cases: (a is even and b is odd) or (a and b are odd).

Case $1 a$ is even and b is odd. We will show that k must be 1 , and so $v_{2}\left(V_{n}^{k-1}\right)=0 \leq v_{2}(m)$. If $2 \mid n$, then we apply Lemma 8 and the assumption that $V_{n}^{k} \mid V_{n m}$ to obtain

$$
1 \leq k=v_{2}\left(V_{n}^{k}\right) \leq v_{2}\left(V_{n m}\right)=1
$$

Similarly, if $2 \nmid n$, then $2 \nmid n m$ and we can use Lemma 8 again to obtain

$$
k v_{2}(a)=v_{2}\left(V_{n}^{k}\right) \leq v_{2}\left(V_{n m}\right)=v_{2}(a) .
$$

In any case, $k=1$, as asserted.
Case $2 a$ and b are odd. We use Lemma 9 in this case. If $n \not \equiv 0(\bmod 3)$, then $v_{2}\left(V_{n}^{k-1}\right)=0 \leq v_{2}(m)$. If $n \equiv 0(\bmod 6)$, then $n m \equiv 0(\bmod 6)$, and so $k=v_{2}\left(V_{n}^{k}\right) \leq v_{2}\left(V_{n m}\right)=1$; thus $v_{2}\left(V_{n}^{k-1}\right)=0 \leq v_{2}(m)$. We now suppose $n \equiv 3(\bmod 6)$. Since m is odd, $n m \equiv 3(\bmod 6)$. Therefore

$$
k\left(v_{2}\left(U_{6}\right)-v_{2}\left(U_{3}\right)\right)=v_{2}\left(V_{n}^{k}\right) \leq v_{2}\left(V_{n m}\right)=v_{2}\left(U_{6}\right)-v_{2}\left(U_{3}\right) .
$$

So $k=1$ and thus $v_{2}\left(V_{n}^{k-1}\right)=0 \leq v_{2}(m)$. Hence $v_{p}\left(V_{n}^{k-1}\right) \leq v_{p}(m)$ for all primes p dividing V_{n}, as desired. This proves (iii).

For (iv), assume that $V_{n}^{k} \| V_{n m}$. By (iii), we have $V_{n}^{k-1} \mid m$. If $V_{n}^{k} \mid m$, then we obtain by (i) that $V_{n}^{k+1} \mid V_{n m}$ which contradicts $V_{n}^{k} \| V_{n m}$. Therefore $V_{n}^{k-1} \| m$. This completes the proof.

Remark 11. Let $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1$, and m is even. Let p be an odd prime dividing V_{n}. By Lemma 4, we have $p \nmid D, \tau(p) \nmid n$ and $\tau(p) \mid 2 n$. Since m is even and $\tau(p) \mid 2 n$, we obtain $\tau(p) \mid m n$. By Lemma 4, we have $p \nmid V_{n m}$, and so $V_{n} \nmid V_{n m}$. This shows that m in Theorem 10 cannot be even unless $V_{n}=2^{r}$ for some $r \in \mathbb{N}$.
Remark 12. The argument in Remark 11 works provided that there exists an odd prime p dividing V_{n}. The case $V_{n}=2^{k}$ for some $k \in \mathbb{N} \cup\{0\}$ may occur but it is very rare. For example, when $a=b=1$, we know from the result of Bugeaud, Mignotte, and Siksek [2] that V_{n} is 1 or is a power of 2 if and only if $n=0,1,3$. Therefore we do not consider this rare case in our theorems.
Lemma 13. Let $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z}$, and $(a, b)=1$. Suppose m is odd and there exists an odd prime p dividing V_{n}. Then $v_{p}\left(U_{n m}\right)=0$ and $V_{n} \nmid U_{n m}$.
Proof. By Lemma 4, we have $p \nmid D, \tau(p) \nmid n$ and $\tau(p) \mid 2 n$. Therefore $\tau(p)$ is even and $v_{2}(\tau(p))=$ $v_{2}(n)+1$. So $\tau(p) \nmid n m$. By Lemma 3, $v_{p}\left(U_{n m}\right)=0$. Therefore $V_{n} \nmid U_{n m}$.

Lemma 14. Let $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z}$, and $(a, b)=1$. Suppose there exists an odd prime $p \mid U_{n}$. Then $v_{p}\left(V_{n m}\right)=0$ and $U_{n} \nmid V_{n m}$.
Proof. By Lemma 3, we have (i) $v_{p}\left(U_{n}\right)=v_{p}(n)+v_{p}\left(U_{p}\right)-1$ if $p \mid D$ and $p \mid n$, and (ii) $v_{p}\left(U_{n}\right)=$ $v_{p}(n)+v_{p}\left(U_{\tau(p)}\right)$ if $p \nmid D$ and $\tau(p) \mid n$. For (i), we have $v_{p}\left(U_{n}\right)>0$ and $p \mid D$, and therefore $v_{p}\left(V_{n m}\right)=0$ and $U_{n} \nmid V_{n m}$. For (ii), we have $\tau(p) \mid n m$ and so $v_{p}\left(V_{n m}\right)=0$ and $U_{n} \nmid V_{n m}$.

Remark 15. By Lemma 13 and a reason similar to that in Remark 12, we do not consider the case where m is odd in Theorems 16 to 20. In addition, by Lemma 14, we do not study the divisibility relation such as $U_{n}^{k} \mid V_{n m}$.

We now have the exact divisibility results for U_{n} and V_{n} separately. In the next theorem, we consider them together. In other words, we investigate the relations of the type $V_{n}^{c} \mid m$ implies $V_{n}^{d} \mid U_{n m}$; and $V_{n}^{c} \| U_{n m}$ implies $V_{n}^{d} \| m$. We divide the results into 5 theorems according to the parities of a and b. From this point on, we apply Lemma 5 without reference.
Theorem 16. Suppose that $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1, a$ is odd, b is even, and m is even. Then
(i) if $V_{n}^{k} \mid m$, then $V_{n}^{k+1} \mid U_{n m}$;
(ii) if $V_{n}^{k} \| m$, then $V_{n}^{k+1} \| U_{n m}$;
(iii) if $V_{n}^{k+1} \mid U_{n m}$, then $V_{n}^{k} \mid m$;
(iv) if $V_{n}^{k+1} \| U_{n m}$, then $V_{n}^{k} \| m$.

Proof. For (i), assume that $V_{n}^{k} \mid m$. We show that $v_{p}\left(V_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right)$ for all primes p dividing V_{n}. By Lemma 7, we have $v_{2}\left(V_{n}\right)=0$. So let p be an odd prime dividing V_{n}. By Lemma 4, $p \nmid D, \tau(p) \nmid n$, and $\tau(p) \mid 2 n$. Then $\tau(p) \mid n m$. By Lemmas 3 and 4, we obtain

$$
\begin{aligned}
v_{p}\left(U_{n m}\right) & =v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) \geq v_{p}\left(V_{n}^{k}\right)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}\left(V_{n}^{k}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+1}\right), \text { as required. }
\end{aligned}
$$

For (ii), assume that $V_{n}^{k} \| m$. By (i), it is enough to show that $V_{n}^{k+2} \nmid U_{n m}$. Since $V_{n}^{k+1} \nmid m$, there exists a prime p such that $v_{p}\left(V_{n}^{k+1}\right)>v_{p}(m)$. By Lemma $7, v_{2}\left(V_{n}^{k+1}\right)=0$, and so $p \neq 2$. Since $p \mid V_{n}$, we know that $p \nmid D$ and $\tau(p) \mid n m$. Therefore we obtain by Lemmas 3 and 4 that

$$
v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right)
$$

$$
<v_{p}\left(V_{n}^{k+1}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+2}\right), \text { as desired. }
$$

For (iii), assume that $V_{n}^{k+1} \mid U_{n m}$. By Lemma 7, $v_{2}(m) \geq 0=v_{2}\left(V_{n}^{k}\right)$. If p is odd and $p \mid V_{n}$, then we apply Lemmas 3 and 4 again to obtain

$$
\begin{aligned}
v_{p}\left(V_{n}\right)+v_{p}\left(V_{n}^{k}\right)=v_{p}\left(V_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right) & =v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}(m)+v_{p}\left(V_{n}\right) .
\end{aligned}
$$

This shows that $v_{p}\left(V_{n}^{k}\right) \leq v_{p}(m)$ for every prime p dividing V_{n}. So $V_{n}^{k} \mid m$.
For (iv), suppose $V_{n}^{k+1} \| U_{n m}$. By (iii), it is enough to show that $V_{n}^{k+1} \nmid m$. If $V_{n}^{k+1} \mid m$, we apply (i) to obtain $V_{n}^{k+2} \mid U_{n m}$ contradicting $V_{n}^{k+1} \| U_{n m}$. Therefore the proof is complete.

Theorem 17. Assume that $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1, a$ is even, b is odd and m is even. Let

$$
\begin{aligned}
t & =\min \left(\left\{v_{2}(n)+v_{2}(a)-2\right\} \cup\left\{y_{p}-k \mid p \text { is an odd prime factor of } V_{n}\right\}\right) \text { and } \\
y_{p} & =\left\lfloor\frac{v_{p}(m)}{v_{p}\left(V_{n}\right)}\right\rfloor \text { for each odd prime } p \text { dividing } V_{n} .
\end{aligned}
$$

Then

(i) if $V_{n}^{k} \mid m$ and $2 \mid n$, then $V_{n}^{k+1} \mid U_{n m}$;
if $V_{n}^{k} \mid m$ and $2 \nmid n$, then $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, U_{n m}$;
if $V_{n}^{k} \mid m, 2 \nmid n$, and $v_{2}(m) \geq v_{2}\left(V_{n}^{k}\right)+1$, then $V_{n}^{k+1} \mid U_{n m}$;
if $V_{n}^{k}|m, 2| n$, and $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, m$, then $t \geq 0, v_{2}(m) \geq k$, and $V_{n}^{k+t+1} \mid U_{n m}$;
(ii) if $V_{n}^{k} \| m, 2 \mid n$ and $\frac{V_{n}^{k+1}}{2} \nmid m$, then $V_{n}^{k+1} \| U_{n m}$;
(iii) if $V_{n}^{k} \| m, 2 \mid n$ and $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, m$, then $V_{n}^{k+t+1} \| U_{n m}$;
(iv) if $V_{n}^{k} \| m, 2 \nmid n$ and $v_{2}(m)=v_{2}\left(V_{n}^{k}\right)$, then $V_{n}^{k} \| U_{n m}$;
(v) if $V_{n}^{k} \| m, 2 \nmid n$ and $v_{2}(m) \geq v_{2}\left(V_{n}^{k}\right)+1$, then $V_{n}^{k+1} \| U_{n m}$.

Proof. For (i), assume that $V_{n}^{k} \mid m$. If p is an odd prime and $p \mid V_{n}$, then $p \nmid D, \tau(p) \mid n m$, and we can apply Lemmas 3 and 4, to obtain

$$
\begin{aligned}
v_{p}\left(U_{n m}\right) & =v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) \\
& \geq v_{p}\left(V_{n}^{k}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V^{k+1}\right) .
\end{aligned}
$$

From this point on, we sometimes use Lemmas 3 and 4 without reference. Next, we consider $v_{2}\left(V_{n}^{k+1}\right)$ and $v_{2}\left(U_{n m}\right)$. If $2 \mid n$, then we apply Lemma 8 to obtain

$$
\begin{aligned}
v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}(a)-1 & =v_{2}(m)+v_{2}(n)+v_{2}(a)-1 \\
& \geq v_{2}\left(V_{n}^{k}\right)+v_{2}(n)+v_{2}(a)-1 \\
& \geq v_{2}\left(V_{n}^{k}\right)+1=v_{2}\left(V_{n}^{k}\right)+v_{2}\left(V_{n}\right)=v_{2}\left(V_{n}^{k+1}\right) .
\end{aligned}
$$

This implies the first part of (i). Since m is even, $2 \mid n m$. So if $2 \nmid n$, then we can still apply Lemma 8 to obtain

$$
\begin{align*}
v_{2}\left(U_{n m}\right) & =v_{2}(n m)+v_{2}(a)-1 \\
& =v_{2}(m)+v_{2}(a)-1 \tag{3.1}\\
& \geq v_{2}\left(V_{n}^{k}\right)+v_{2}(a)-1=v_{2}\left(V_{n}^{k}\right)+v_{2}\left(V_{n}\right)-1=v_{2}\left(\frac{V_{n}^{k+1}}{2}\right) .
\end{align*}
$$

This implies the second part of (i). For the third part of (i), we assume that $2 \nmid n$ and $v_{2}(m) \geq$ $v_{2}\left(V_{n}^{k}\right)+1$, and then we repeat the argument used in the second part to obtain

$$
v_{2}\left(U_{n m}\right)=v_{2}(m)+v_{2}(a)-1 \geq v_{2}\left(V_{n}^{k}\right)+v_{2}(a)=v_{2}\left(V_{n}^{k+1}\right) .
$$

Therefore $v_{p}\left(U_{n m}\right) \geq v_{p}\left(V_{n}^{k+1}\right)$ for all primes p, which implies the desired result. Next, we prove the last part of (i). Assume that $V_{n}^{k}|m, 2| n$, and $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, m$. Since a and n are even, $v_{2}(n)+v_{2}(a)-2 \geq 0$. In addition, $v_{p}(m) \geq v_{p}\left(V_{n}^{k}\right)=k v_{p}\left(V_{n}\right)$, and so $y_{p} \geq k$. Therefore $t \geq 0$ and $t+1 \leq v_{2}(n)+v_{2}(a)-1$. By Lemma 8, we have $v_{p}\left(V_{n}\right)=1$, and therefore $v_{p}(m) \geq k$ and

$$
v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}(a)-1=v_{2}(m)+v_{2}(n)+v_{2}(a)-1 \geq k+t+1=v_{2}\left(V_{n}^{k+t+1}\right) .
$$

If p is an odd prime and $p \mid V_{n}$, then

$$
\begin{aligned}
v_{p}\left(U_{n m}\right) & =v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right) \geq y_{p} v_{p}\left(V_{n}\right)+v_{p}\left(V_{n}\right) \\
& =\left(y_{p}+1\right) v_{p}\left(V_{n}\right) \geq(k+t+1) v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+t+1}\right) .
\end{aligned}
$$

Hence $v_{p}\left(U_{n m}\right) \geq v_{p}\left(V_{n}^{k+t+1}\right)$ for all primes p dividing V_{n}. Thus $V_{n}^{k+t+1} \mid U_{n m}$, as desired.
Next, we prove (ii). Assume that $V_{n}^{k} \| m, 2 \mid n$ and $\frac{V_{n}^{k+1}}{2} \nmid m$. By (i), it is enough to show that $V_{n}^{k+2} \nmid U_{n m}$. By Lemma 8, we know that $v_{2}\left(V_{n}\right)=1$. Then $v_{2}(m) \geq v_{2}\left(V_{n}^{k}\right)=v_{2}\left(\frac{v_{n}^{k+1}}{2}\right)$. Since $\frac{V_{n}^{k+1}}{2} \nmid m$, there exists an odd prime p dividing V_{n} such that $v_{p}\left(V_{n}^{k+1}\right)>v_{p}(m)$. Then $p \nmid D, \tau(p) \mid n m$, and

$$
\begin{aligned}
v_{p}\left(V_{n}^{k+2}\right)=v_{p}\left(V_{n}^{k+1}\right)+v_{p}\left(V_{n}\right) & >v_{p}(m)+v_{p}\left(V_{n}\right) \\
& =v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}\left(U_{n m}\right) .
\end{aligned}
$$

This implies $V_{n}^{k+2} \nmid U_{n m}$.
For (iii), assume that $V_{n}^{k} \| m, 2 \mid n$, and $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, m$. By (i), we obtain $t \geq 0, v_{2}(m) \geq k$, and $V_{n}^{k+t+1} \mid U_{n m}$. So it remains to show that $V_{n}^{k+t+2} \nmid U_{n m}$. We first observe that since $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, m$, we obtain $v_{p}\left(V_{n}^{k+1}\right) \leq v_{p}(m)$ for every odd prime p. If $v_{2}(m) \geq k+1$, then $v_{2}(m) \geq v_{2}\left(V_{n}^{k+1}\right)$ which implies $V_{n}^{k+1} \mid m$ contradicting the assumption $V_{n}^{k} \| m$. Therefore $v_{2}(m)=k$. Next, we show that $V_{n}^{k+t+2} \nmid U_{n m}$. If $t=y_{p}-k$ for some odd prime p dividing V_{n}, then we apply Lemmas 3 and 4 to obtain

$$
\begin{aligned}
v_{p}\left(U_{n m}\right) & =v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}(m)+v_{p}\left(V_{n}\right)=\left(\frac{v_{p}(m)}{v_{p}\left(V_{n}\right)}+1\right) v_{p}\left(V_{n}\right)
\end{aligned}
$$

$$
<\left(y_{p}+2\right) v_{p}\left(V_{n}\right)=(k+t+2) v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+t+2}\right),
$$

and so $V_{n}^{k+t+2} \nmid U_{n m}$. If $t=v_{2}(n)+v_{2}(a)-2$, then we obtain by Lemma 8 that

$$
v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}(a)-1=v_{2}(m)+v_{2}(n)+v_{2}(a)-1=k+t+1<v_{2}\left(V_{n}^{k+t+2}\right),
$$

and so $V_{n}^{k+t+2} \nmid U_{n m}$. This proves (iii).
Next, we prove (iv). Assume that $V_{n}^{k} \| m, 2 \nmid n$ and $v_{2}(m)=v_{2}\left(V_{n}^{k}\right)$. By (i), we have $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, U_{n m}$. To show that $V_{n}^{k} \mid U_{n m}$, it suffices to prove that $v_{2}\left(V_{n}^{k}\right) \leq v_{2}\left(U_{n m}\right)$. Recall from (3.1) in the proof of the second part of (i) that

$$
v_{2}\left(U_{n m}\right)=v_{2}(m)+v_{2}(a)-1=v_{2}\left(V_{n}^{k}\right)+v_{2}(a)-1 \geq v_{2}\left(V_{n}^{k}\right),
$$

and

$$
v_{2}\left(U_{n m}\right)=v_{2}(m)+v_{2}(a)-1=v_{2}\left(V_{n}^{k}\right)+v_{2}\left(V_{n}\right)-1<v_{2}\left(V_{n}^{k+1}\right) .
$$

So $V_{n}^{k} \mid U_{n m}$ and $V_{n}^{k+1} \nmid U_{n m}$. Thus $V_{n}^{k} \| U_{n m}$.
For (v), assume that $V_{n}^{k} \| m, 2 \nmid n$, and $v_{2}(m) \geq v_{2}\left(V_{n}^{k}\right)+1$. By (i), it suffices to show that $V_{n}^{k+2} \nmid U_{n m}$. Since $V_{n}^{k+1} \nmid m$, there exists a prime p dividing V_{n} such that $v_{p}\left(V_{n}^{k+1}\right)>v_{p}(m)$. If $p=2$, then we obtain by Lemma 8 that

$$
v_{2}\left(U_{n m}\right)=v_{2}(m)+v_{2}(a)-1<v_{2}\left(V_{n}^{k+1}\right)+v_{2}\left(V_{n}\right)-1<v_{2}\left(V_{n}^{k+2}\right),
$$

and so $V_{n}^{k+2} \nmid U_{n m}$. If $p>2$, then we obtain

$$
v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right)<v_{p}\left(V_{n}^{k+1}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+2}\right),
$$

which implies $V_{n}^{k+2} \nmid U_{n m}$. This completes the proof.
From this point on, we apply Lemmas $3,4,5$, and 8 without reference.
Theorem 18. Suppose that $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1, a$ is even, b is odd, and m is even. Then
(i) for all odd primes p, if $v_{p}\left(V_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right)$, then $v_{p}\left(V_{n}^{k}\right) \leq v_{p}(m)$;
(ii) if $V_{n}^{k+1} \mid U_{n m}$ and $2 \mid n$, then $V_{n}^{\min \left(k, v_{2}(m)\right)} \mid m$; if $V_{n}^{k+1} \| U_{n m}$ and $2 \mid n$, then $V_{n}^{\min \left(k, v_{2}(m)\right)} \| m$;
(iii) if $V_{n}^{k+1} \mid U_{n m}$ and $2 \nmid n$, then $V_{n}^{k} \mid m$;
(iv) if $V_{n}^{k+1} \| U_{n m}, 2 \nmid n$ and $\frac{V_{n}^{k+2}}{2} \nmid U_{n m}$, then $V_{n}^{k} \| m$;
(v) if $V_{n}^{k+1} \| U_{n m}, 2 \nmid n$, and $\left.\frac{V_{n}^{k+2}}{2} \right\rvert\, U_{n m}$, then $V_{n}^{k+1} \| m$.

Proof. For (i), assume that p is an odd prime and $v_{p}\left(V_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right)$. If $p \mid V_{n}$, then

$$
\begin{aligned}
v_{p}\left(V_{n}\right)+v_{p}\left(V_{n}^{k}\right)=v_{p}\left(V_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right) & =v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) \\
& =v_{p}(m)+v_{p}\left(V_{n}\right),
\end{aligned}
$$

which implies (i). By (i), we only need to consider the 2-adic valuation in the proofs of (ii), (iii), (iv), and (v).

For (ii), assume that $V_{n}^{k+1} \mid U_{n m}$ and $2 \mid n$. For convenience, let $c=\min \left(k, v_{2}(m)\right)$. If $v_{2}(m) \geq k$, then $v_{2}\left(V_{n}^{k}\right)=k \leq v_{2}(m)$, and so $V_{n}^{k} \mid m$. If $v_{2}(m)<k$, then $v_{2}\left(V_{n}^{v_{2}(m)}\right)=v_{2}(m)$ and $v_{p}\left(V_{n}^{v_{2}(m)}\right) \leq v_{p}\left(V_{n}^{k}\right) \leq$ $v_{p}(m)$ for all odd primes p, and therefore $V_{n}^{v_{2}(m)} \mid m$. In any case, we obtain $V_{n}^{c} \mid m$. This proves the first part of (ii). Suppose further that $V_{n}^{k+1} \| U_{n m}$ but $V_{n}^{c+1} \mid m$. Then

$$
v_{2}(m) \geq v_{2}\left(V_{n}^{c+1}\right)=\min \left(k, v_{2}(m)\right)+1,
$$

which implies $c=k$. Then $V_{n}^{k+1}=V_{n}^{c+1} \mid m$. By (i) of Theorem 17, we obtain $V_{n}^{k+2} \mid U_{n m}$ contradicting $V_{n}^{k+1} \| U_{n m}$. This completes the proof of (ii).

For (iii), assume that $V_{n}^{k+1} \mid U_{n m}$ and $2 \nmid n$. Then

$$
v_{2}(a)+v_{2}\left(V_{n}^{k}\right)=v_{2}\left(V_{n}^{k+1}\right) \leq v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}(a)-1=v_{2}(m)+v_{2}(a)-1 .
$$

Therefore $v_{2}\left(V_{n}^{k}\right)<v_{2}(m)$, and so $V_{n}^{k} \mid m$.
For (iv), assume that $V_{n}^{k+1} \| U_{n m}, 2 \nmid n$, and $\frac{V_{n}^{k+2}}{2} \nmid U_{n m}$. By (iii), $V_{n}^{k} \mid m$. If $V_{n}^{k+1} \mid m$, then we obtain from (i) of Theorem 17 that $\left.\frac{V_{n}^{k+2}}{2} \right\rvert\, U_{n m}$, a contradiction. So $V_{n}^{k} \| m$.

For (v), assume that $V_{n}^{k+1} \| U_{n m}, 2 \nmid n$, and $\left.\frac{V_{n}^{k+2}}{2} \right\rvert\, U_{n m}$. Then

$$
v_{2}\left(V_{n}^{k+1}\right)+v_{2}(a)-1=v_{2}\left(V_{n}^{k+2}\right)-1 \leq v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}(a)-1=v_{2}(m)+v_{2}(a)-1,
$$

and so $v_{2}\left(V_{n}^{k+1}\right) \leq v_{2}(m)$. Therefore $V_{n}^{k+1} \mid m$. If $V_{n}^{k+2} \mid m$, we obtain from (i) of Theorem 17 that $\left.\frac{V_{n}^{k+3}}{2} \right\rvert\, U_{n m}$, which implies $V_{n}^{k+2} \mid U_{n m}$ contradicting $V_{n}^{k+1} \| U_{n m}$. Therefore $V_{n}^{k+1} \| m$ and the proof is complete.

Theorem 19. Suppose that $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1$, a and b are odd, and m is even. Let $c=v_{2}\left(U_{6}\right)-1$,

$$
\begin{aligned}
t & =\min \left(\left\{v_{2}(n)+c-1\right\} \cup\left\{y_{p}-k \mid p \text { is an odd prime factor of } V_{n}\right\}\right), \\
s & =\min \left(\{c-1\} \cup\left\{y_{p}-k \mid p \text { is an odd prime factor of } V_{n}\right\}\right), \text { and } \\
y_{p} & =\left\lfloor\frac{v_{p}(m)}{v_{p}\left(V_{n}\right)}\right\rfloor \text { for each odd prime } p \text { dividing } V_{n} .
\end{aligned}
$$

Then
(i) if $V_{n}^{k} \mid m$, then $V_{n}^{k+1} \mid U_{n m}$;
(ii) if $V_{n}^{k} \| m$ and $n \not \equiv 0(\bmod 3)$, then $V_{n}^{k+1} \| U_{n m}$;
(iii) if $V_{n}^{k} \| m, n \equiv 0(\bmod 6)$ and $\frac{V_{n}^{k+1}}{2} \nmid m$, then $V_{n}^{k+1} \| U_{n m}$;
(iv) if $V_{n}^{k} \mid m, n \equiv 0(\bmod 6)$, and $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, m$, then $t \geq 0$ and $V_{n}^{k+t+1} \mid U_{n m}$; if $V_{n}^{k} \| m, n \equiv 0(\bmod 6)$ and $\left.\frac{v_{n}^{k+1}}{2} \right\rvert\, m$, then $V_{n}^{k+t+1} \| U_{n m}$;
(v) if $V_{n}^{k}\|m, n \equiv 3(\bmod 6), 2\| a^{2}+3 b$ and $\frac{V_{n}^{k+1}}{2} \nmid m$, then $V_{n}^{k+1} \| U_{n m}$;
(vi) if $V_{n}^{k} \mid m, n \equiv 3(\bmod 6), 2 \| a^{2}+3 b$, and $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, m$, then $s \geq 0$ and $V_{n}^{k+s+1} \mid U_{n m}$; if $V_{n}^{k}\|m, n \equiv 3(\bmod 6), 2\| a^{2}+3 b$ and $\left.\frac{V_{n}^{k+1}}{V_{k}^{2}} \right\rvert\, m$, then $V_{n}^{k+s+1} \| U_{n m}$;
(vii) if $V_{n}^{k} \| m, n \equiv 3(\bmod 6), 4 \mid a^{2}+3 b$ and $\frac{V_{n}^{k+1}}{2^{c}} \nmid m$, then $V_{n}^{k+1} \| U_{n m}$;
(viii) if $V_{n}^{k}|m, n \equiv 3(\bmod 6), 4| a^{2}+3 b$ and $\left.\frac{V_{n}^{k+1}}{2^{c}} \right\rvert\, m$, then $V_{n}^{k+2} \mid 2^{c} U_{n m}$; if $V_{n}^{k} \| m, n \equiv 3(\bmod 6), 4 \mid a^{2}+3 b$ and $\left.\frac{V_{n}^{k+1}}{2^{c}} \right\rvert\, m$, then $V_{n}^{k+2} \| 2^{c} U_{n m}$.
Proof. As usual, to prove that $V_{n}^{d} \mid U_{n m}$, we show that $v_{p}\left(V_{n}^{d}\right) \leq v_{p}\left(U_{n m}\right)$ for all primes p dividing V_{n}. Similarly, if we would like to prove that $V_{n}^{d} \nmid U_{n m}$, then we show that $v_{p}\left(V_{n}^{d}\right)>v_{p}\left(U_{n m}\right)$ for some prime p. If p is odd, then we apply Lemmas 3 and 4 ; if $p=2$, then we use Lemma 9; and we will do this without further reference. For (i), assume that $V_{n}^{k} \mid m$. If p is odd and $p \mid V_{n}$, then

$$
v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right) \geq v_{p}\left(V_{n}^{k}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V^{k+1}\right) .
$$

So it remains to show that $v_{2}\left(U_{n m}\right) \geq v_{2}\left(V_{n}^{k+1}\right)$. If $n \not \equiv 0(\bmod 3)$, then $v_{2}\left(V_{n}^{k+1}\right)=0 \leq v_{2}\left(U_{n m}\right)$. So suppose that $n \equiv 0(\bmod 3)$. Then $n m \equiv 0(\bmod 6)$ and so

$$
\begin{equation*}
v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}\left(U_{6}\right)-1 \geq v_{2}\left(V_{n}^{k}\right)+v_{2}(n)+v_{2}\left(U_{6}\right)-1 . \tag{3.2}
\end{equation*}
$$

Since $U_{3}=a^{2}+b$ is even and $U_{6}=a\left(a^{2}+3 b\right) U_{3}$, we know that $v_{2}\left(U_{3}\right) \geq 1$ and $v_{2}\left(U_{6}\right) \geq 1$. So if $n \equiv 0$ $(\bmod 6)$, then $v_{2}(n) \geq 1$ and (3.2) implies that

$$
v_{2}\left(U_{n m}\right) \geq v_{2}\left(V_{n}^{k}\right)+v_{2}\left(U_{6}\right) \geq v_{2}\left(V_{n}^{k}\right)+v_{2}\left(V_{n}\right)=v_{2}\left(V_{n}^{k+1}\right) .
$$

If $n \equiv 3(\bmod 6)$, then (3.2) implies

$$
v_{2}\left(U_{n m}\right) \geq v_{2}\left(V_{n}^{k}\right)+v_{2}\left(U_{6}\right)-1 \geq v_{2}\left(V_{n}^{k}\right)+v_{2}\left(U_{6}\right)-v_{2}\left(U_{3}\right)=v_{2}\left(V_{n}^{k+1}\right) .
$$

In any case, $v_{2}\left(U_{n m}\right) \geq v_{2}\left(V_{n}^{k+1}\right)$. This proves (i).
For (ii), assume that $V_{n}^{k} \| m$ and $n \neq 0(\bmod 3)$. By (i), it is enough to show that $V_{n}^{k+2} \nmid U_{n m}$. Since $V_{n}^{k+1} \nmid m$, there exists a prime p dividing V_{n} such that $v_{p}\left(V_{n}^{k+1}\right)>v_{p}(m)$. Since $v_{2}\left(V_{n}^{k+1}\right)=0$, we see that $p \neq 2$. Then
$v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}(n)+v_{p}\left(U_{\tau(p)}\right)<v_{p}\left(V_{n}^{k+1}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+2}\right)$, as desired.
For (iii), assume that $V_{n}^{k} \| m, n \equiv 0(\bmod 6)$, and $\frac{V_{n}^{k+1}}{2} \nmid m$. By (i), it is enough to show that $V_{n}^{k+2} \nmid U_{n m}$. Since $\frac{V_{n}^{k+1}}{2} \nmid m$ and $v_{2}\left(\frac{v_{n}^{k+1}}{2}\right)=v_{2}\left(V_{n}^{k}\right) \leq v_{2}(m)$, we see that there exists an odd prime p dividing V_{n} such that $v_{p}\left(V_{n}^{k+1}\right)>v_{p}(m)$. Then

$$
v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right)<v_{p}\left(V_{n}^{k+1}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+2}\right) .
$$

Therefore $V_{n}^{k+2} \nmid U_{n m}$, as required.
For (iv), we first assume that $V_{n}^{k} \mid m, n \equiv 0(\bmod 6)$, and $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, m$. Since $v_{2}(n) \geq 1$ and $v_{2}\left(U_{6}\right) \geq$ $v_{2}\left(U_{3}\right) \geq 1$, it is not difficult to see that $t \geq 0$. If p is an odd prime dividing V_{n}, then

$$
\begin{aligned}
v_{p}\left(U_{n m}\right) & =v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right) \\
& \geq y_{p} v_{p}\left(V_{n}\right)+v_{p}\left(V_{n}\right)=\left(y_{p}+1\right) v_{p}\left(V_{n}\right) \\
& \geq(k+t+1) v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+t+1}\right) .
\end{aligned}
$$

In addition,

$$
v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}\left(U_{6}\right)-1=v_{2}(m)+v_{2}(n)+v_{2}\left(U_{6}\right)-1
$$

$$
\geq v_{2}\left(V_{n}^{k}\right)+t+1=k+t+1=v_{2}\left(V_{n}^{k+t+1}\right)
$$

Therefore $V_{n}^{k+t+1} \mid U_{n m}$. This proves the first part of (iv). Next, assume further that $V_{n}^{k} \| m$. It is enough to show that $V_{n}^{k+t+2} \nmid U_{n m}$. Recall that $y_{p}=\left\lfloor\frac{v_{p}(m)}{v_{p}\left(V_{n}\right)}\right\rfloor$, so $v_{p}(m)<\left(y_{p}+1\right) v_{p}\left(V_{n}\right)$. So if $t=y_{p}-k$ for some odd prime p dividing V_{n}, then

$$
v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right)<\left(y_{p}+2\right) v_{p}\left(V_{n}\right)=(k+t+2) v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+t+2}\right),
$$

which implies $V_{n}^{k+t+2} \nmid U_{n m}$. So suppose $t=v_{2}(n)+v_{2}\left(U_{6}\right)-2$. Since $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, m$, we see that $v_{p}(m) \geq$ $v_{p}\left(V_{n}^{k+1}\right)$ for all odd primes p. If $v_{2}(m) \geq k+1$, then $v_{2}(m) \geq v_{2}\left(V_{n}^{k+1}\right)$, which implies $V_{n}^{k+1} \mid m$ contradicting the assumption $V_{n}^{k} \| m$. Therefore $v_{2}(m) \leq k$. Then

$$
v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}\left(U_{6}\right)-1=v_{2}(m)+v_{2}(n)+v_{2}\left(U_{6}\right)-1 \leq k+t+1<v_{2}\left(V_{n}^{k+t+2}\right) .
$$

Therefore, $V_{n}^{k+t+2} \nmid U_{n m}$ as required.
For (v), assume that $V_{n}^{k}\|m, n \equiv 3(\bmod 6), 2\| a^{2}+3 b$, and $\frac{V_{n}^{k+1}}{2} \nmid m$. By (i), it suffies to show that $V_{n}^{k+2} \nmid U_{n m}$. Since $U_{6}=a\left(a^{2}+3 b\right) U_{3}$ and $2 \| a^{2}+3 b$, we obtain $v_{2}\left(V_{n}\right)=v_{2}\left(U_{6}\right)-v_{2}\left(U_{3}\right)=1$. Since $\frac{V_{n}^{k+1}}{2} \nmid m$ and $v_{2}\left(\frac{V_{n}^{k+1}}{2}\right)=v_{2}\left(V_{n}^{k}\right) \leq v_{2}(m)$, there exists an odd prime p dividing V_{n} such that $v_{p}\left(V_{n}^{k+1}\right)>v_{p}(m)$. Therefore

$$
v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right)<v_{p}\left(V_{n}^{k+1}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+2}\right), \text { as desired. }
$$

For (vi), assume that $V_{n}^{k} \mid m, n \equiv 3(\bmod 6), 2 \| a^{2}+3 b$, and $\left.\frac{V_{n}^{k+1}}{2} \right\rvert\, m$. Since $a^{2}+3 b$ and U_{3} are even, and $U_{6}=a\left(a^{2}+3 b\right) U_{3}$, we have $v_{2}\left(U_{6}\right)-2 \geq 0$. Since $V_{n}^{k} \mid m$, we have $y_{p} \geq k$ for all odd primes p dividing V_{n}. Therefore $s \geq 0$. By the same argument as in the proof of (v), we obtain $v_{2}\left(V_{n}\right)=1$. In addition, $v_{2}(m) \geq v_{2}\left(V_{n}^{k}\right)=k$ and $v_{p}\left(V_{n}^{k+1}\right)=v_{p}\left(\frac{V_{n}^{k+1}}{2}\right) \leq v_{p}(m)$ for every odd prime p. If $V_{n}^{k} \| m$ and $v_{2}(m) \geq k+1=v_{2}\left(V_{n}^{k+1}\right)$, then $V_{n}^{k+1} \mid m$ which is a contradiction. Therefore,

$$
\begin{equation*}
\text { if } V_{n}^{k} \| m \text {, then } v_{2}(m)=k \tag{3.3}
\end{equation*}
$$

We will apply (3.3) later. For now, we only need to apply $v_{2}(m) \geq k$. We obtain

$$
v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}\left(U_{6}\right)-1=v_{2}(m)+v_{2}\left(U_{6}\right)-1 \geq k+v_{2}\left(U_{6}\right)-1 \geq k+s+1=v_{2}\left(V_{n}^{k+s+1}\right) .
$$

If $p>2$ and $p \mid V_{n}$, then

$$
v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right) \geq\left(y_{p}+1\right) v_{p}\left(V_{n}\right) \geq(k+s+1) v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+s+1}\right) .
$$

This implies $V_{n}^{k+s+1} \mid U_{n m}$. Next, assume further that $V_{n}^{k} \| m$. It remains to show that $V_{n}^{k+s+2} \nmid U_{n m}$. By the definition of y_{p}, we know that $\left(y_{p}+1\right) v_{p}\left(V_{n}\right)>v_{p}(m)$. So if $s=y_{p}-k$ for some odd prime p dividing V_{n}, then

$$
v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right)<\left(y_{p}+2\right) v_{p}\left(V_{n}\right)=(k+s+2) v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+s+2}\right),
$$

which implies $V_{n}^{k+s+2} \nmid U_{n m}$. By (3.3), we know that $v_{2}(m)=k$. So if $s=v_{2}\left(U_{6}\right)-2$, then

$$
v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}\left(U_{6}\right)-1=v_{2}(m)+v_{2}\left(U_{6}\right)-1=k+s+1<v_{2}\left(V_{n}^{k+s+2}\right) .
$$

So in any case, $V_{n}^{k+s+2} \nmid U_{n m}$, as required.
For (vii), we let $c=v_{2}\left(U_{6}\right)-1$ and assume that $V_{n}^{k} \| m, n \equiv 3(\bmod 6), 4 \mid a^{2}+3 b$, and $\frac{V_{n}^{k+1}}{2^{c}} \nmid m$. By (i), it is enough to show that $V_{n}^{k+2} \nmid U_{n m}$. Since $4 \mid a^{2}+3 b$ and $U_{6}=a\left(a^{2}+3 b\right) U_{3}$, we have $v_{2}\left(U_{6}\right) \geq$ $v_{2}\left(U_{3}\right)+2$. By Lemma 6, we obtain $v_{2}\left(U_{3}\right)=1$, and so $v_{2}\left(V_{n}\right)=v_{2}\left(U_{6}\right)-v_{2}\left(U_{3}\right)=v_{2}\left(U_{6}\right)-1=c$. Since $\frac{V_{2}^{k+1}}{2^{c}} \nmid m$ and

$$
v_{2}\left(\frac{V_{n}^{k+1}}{2^{c}}\right)=(k+1) v_{2}\left(V_{n}\right)-v_{2}\left(V_{n}\right)=v_{2}\left(V_{n}^{k}\right) \leq v_{2}(m),
$$

there exists an odd prime p dividing V_{n} such that $v_{p}\left(V_{n}^{k+1}\right)>v_{p}(m)$. Then

$$
v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right)<v_{p}\left(V_{n}^{k+1}\right)+v_{p}\left(V_{n}\right)=V_{p}\left(V_{n}^{k+2}\right) .
$$

Therefore $V_{n}^{k+2} \nmid U_{n m}$.
For (viii), assume that $V_{n}^{k}|m, n \equiv 3(\bmod 6), 4| a^{2}+3 b$, and $\left.\frac{V_{n}^{k+1}}{2^{c}} \right\rvert\, m$. Then for each odd prime p dividing V_{n}, we have

$$
\begin{equation*}
v_{p}\left(V_{n}^{k+1}\right)=v_{p}\left(\frac{V_{n}^{k+1}}{2^{c}}\right) \leq v_{p}(m) . \tag{3.4}
\end{equation*}
$$

Since $4 \mid a^{2}+3 b$ and $U_{6}=a\left(a^{2}+3 b\right) U_{3}$, we obtain $v_{2}\left(U_{6}\right) \geq v_{2}\left(U_{3}\right)+2$. By the same argument as in the proof of (vii), we obtain $v_{2}\left(V_{n}\right)=v_{2}\left(U_{6}\right)-1=c$. Since $V_{n}^{k} \mid m$, we see that $v_{2}(m) \geq v_{2}\left(V_{n}^{k}\right)=k v_{2}\left(V_{n}\right)$. If $V_{n}^{k} \| m$ and $v_{2}(m) \geq(k+1) v_{2}\left(V_{n}\right)$, then $v_{p}(m) \geq v_{p}\left(V_{n}^{k+1}\right)$ for all primes p, and so $V_{n}^{k+1} \mid m$, a contradiction. Therefore

$$
\begin{equation*}
v_{2}(m) \geq k v_{2}\left(V_{n}\right), \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } V_{n}^{k} \| m \text {, then } k v_{2}\left(V_{n}\right) \leq v_{2}(m)<(k+1) v_{2}\left(V_{n}\right) . \tag{3.6}
\end{equation*}
$$

We will apply (3.6) later. For now (3.5) is good enough. We obtain

$$
\begin{aligned}
v_{2}\left(2^{c} U_{n m}\right) & =v_{2}\left(U_{6}\right)-1+v_{2}\left(U_{n m}\right)=v_{2}\left(U_{6}\right)-1+v_{2}(n m)+v_{2}\left(U_{6}\right)-1 \\
& =2\left(v_{2}\left(U_{6}\right)-1\right)+v_{2}(m) \\
& \geq 2\left(v_{2}\left(U_{6}\right)-1\right)+k v_{2}\left(V_{n}\right) \\
& =2\left(v_{2}\left(U_{6}\right)-1\right)+k\left(v_{2}\left(U_{6}\right)-1\right) \\
& =(k+2)\left(v_{2}\left(U_{6}\right)-1\right)=v_{2}\left(V_{n}^{k+2}\right) .
\end{aligned}
$$

If $p>2$ and $p \mid V_{n}$, then

$$
v_{p}\left(2^{c} U_{n m}\right)=v_{p}\left(U_{n m}\right)=v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right) \geq v_{p}\left(V_{n}^{k+1}\right)+v_{p}\left(V_{n}\right)=v_{p}\left(V_{n}^{k+2}\right),
$$

where the last inequality is obtained from (3.4). This implies that $V_{n}^{k+2} \mid 2^{c} U_{n m}$. So the first part of (viii) is proved. Next, assume further that $V_{n}^{k} \| m$. To prove the second part, it now suffices to show that $V_{n}^{k+3} \nmid 2^{c} U_{n m}$. We have

$$
v_{2}\left(2^{c} U_{n m}\right)=v_{2}\left(U_{6}\right)-1+v_{2}\left(U_{n m}\right)
$$

$$
\begin{aligned}
& =v_{2}\left(U_{6}\right)-1+v_{2}(n m)+v_{2}\left(U_{6}\right)-1 \\
& =2\left(v_{2}\left(U_{6}\right)-1\right)+v_{2}(m) \\
& <2\left(v_{2}\left(U_{6}\right)-1\right)+(k+1)\left(v_{2}\left(U_{6}\right)-1\right) \\
& =(k+3)\left(v_{2}\left(U_{6}\right)-1\right)=v_{2}\left(V_{n}^{k+3}\right),
\end{aligned}
$$

where the inequality is obtained form (3.6) and the fact that $v_{2}\left(V_{n}\right)=v_{2}\left(U_{6}\right)-1$. This completes the proof.

Theorem 20. Suppose that $k, m, n \in \mathbb{N}, a, b \in \mathbb{Z},(a, b)=1, a$ and b are odd and m is even. Then
(i) for every odd prime p dividing V_{n}, if $v_{p}\left(V_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right)$, then $v_{p}\left(V_{n}^{k}\right) \leq v_{p}(m)$;
(ii) if $V_{n}^{k+1} \mid U_{n m}$ and $n \not \equiv 0(\bmod 3)$, then $V_{n}^{k} \mid m$; if $V_{n}^{k+1} \| U_{n m}$ and $n \not \equiv 0(\bmod 3)$, then $V_{n}^{k} \| m$;
(iii) if $V_{n}^{k+1} \mid U_{n m}, n \equiv 0(\bmod 6)$, and $v_{2}(m) \geq k$, then $V_{n}^{k} \mid m$;
if $V_{n}^{k+1} \| U_{n m}, n \equiv 0(\bmod 6)$, and $v_{2}(m) \geq k$, then $V_{n}^{k} \| m$;
if $V_{n}^{k+1} \mid U_{n m}, n \equiv 0(\bmod 6)$, and $v_{2}(m)<k$, then $V_{n}^{v_{2}(m)} \| m$;
(iv) if $V_{n}^{k+1} \mid U_{n m}, n \equiv 3(\bmod 6), 2 \| a^{2}+3 b$, and $v_{2}(m) \geq k$, then $V_{n}^{k} \mid m$;
if $V_{n}^{k+1}\left\|U_{n m}, n \equiv 3(\bmod 6), 2\right\| a^{2}+3 b$, and $v_{2}(m) \geq k$, then $V_{n}^{k} \| m$;
if $V_{n}^{k+1} \mid U_{n m}, n \equiv 3(\bmod 6), 2 \| a^{2}+3 b$, and $v_{2}(m)<k$, then $V_{2}^{v_{2}(m)} \| m$;
(v) if $V_{n}^{k+1} \mid U_{n m}, n \equiv 3(\bmod 6)$, and $4 \mid a^{2}+3 b$, then $V_{n}^{k} \mid m$;
if $V_{n}^{k+1} \| U_{n m}, n \equiv 3(\bmod 6)$, and $4 \mid a^{2}+3 b$, then $V_{n}^{k} \| m$.
Proof. We apply Lemmas 3, 4, and 9 throughout the proof without reference. For (i), assume that p is an odd prime dividing V_{n} and $v_{p}\left(V_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right)$. Then

$$
v_{p}\left(V_{n}\right)+v_{p}\left(V_{n}^{k}\right)=v_{p}\left(V_{n}^{k+1}\right) \leq v_{p}\left(U_{n m}\right) \leq v_{p}(n m)+v_{p}\left(U_{\tau(p)}\right)=v_{p}(m)+v_{p}\left(V_{n}\right),
$$

which implies (i). Therefore we only need to consider the 2 -adic valuation in the proof of (ii) to (v).
For (ii), assume that $V_{n}^{k+1} \mid U_{n m}$ and $n \not \equiv 0(\bmod 3)$. Since $v_{2}\left(V_{n}^{k}\right)=0 \leq v_{2}(m)$, we obtain by (i) that $V_{n}^{k} \mid m$. Suppose futher that $V_{n}^{k+1} \| U_{n m}$. If $V_{n}^{k+1} \mid m$, then (i) of Theorem 19 implies $V_{n}^{k+2} \mid U_{n m}$, which contradicts $V_{n}^{k+1} \| U_{n m}$, and so $V_{n}^{k} \| m$.

For (iii), assume that $V_{n}^{k+1} \mid U_{n m}$ and $n \equiv 0(\bmod 6)$.
Case $1 v_{2}(m) \geq k$. Then $v_{2}\left(V_{n}^{k}\right)=k \leq v_{2}(m)$. So we obtain by (i) that $V_{n}^{k} \mid m$. If $V_{n}^{k+1} \| U_{n m}$, then we obtain by (i) of Theorem 19 that $V_{n}^{k+1} \nmid m$, and so $V_{n}^{k} \| m$. This proves (iii) in the case $v_{2}(m) \geq k$.

Case $2 v_{2}(m)<k$. For convenience, let $d=v_{2}(m)$. Since $v_{2}\left(V_{n}^{d}\right)=d=v_{2}(m)$ and $v_{p}\left(V_{n}^{d}\right) \leq v_{p}\left(V_{n}^{k}\right) \leq$ $v_{p}(m)$ for every odd prime p dividing V_{n}, we obtain $V_{n}^{d} \mid m$. If $V_{n}^{d+1} \mid m$, then $d+1=v_{2}\left(V_{n}^{d+1}\right) \leq v_{2}(m)=$ d, a contradiction. So $V_{n}^{d} \| m$.

For (iv), assume that $V_{n}^{k+1} \mid U_{n m}, n \equiv 3(\bmod 6)$, and $2 \| a^{2}+3 b$. Since $U_{6}=a\left(a^{2}+3 b\right) U_{3}$ and $2 \| a^{2}+3 b$, we obtain $v_{2}\left(V_{n}\right)=v_{2}\left(U_{6}\right)-v_{2}\left(U_{3}\right)=1$.

Case $1 v_{2}(m) \geq k$. Then $v_{2}\left(V_{n}^{k}\right)=k \leq v_{2}(m)$, and so we obtain by (i) that $V_{n}^{k} \mid m$. If $V_{n}^{k+1} \| U_{n m}$, then we obtain by (i) of Theorem 19 that $V_{n}^{k} \| m$. This proves (iv) in the case $v_{2}(m) \geq k$.

Case $2 v_{2}(m)<k$. For convenience, let $d=v_{2}(m)$. Then $v_{2}\left(V_{n}^{d}\right)=d=v_{2}(m)$ and $v_{p}\left(V_{n}^{d}\right) \leq v_{p}\left(V_{n}^{k}\right) \leq$ $v_{p}(m)$. Therefore $V_{n}^{d} \mid m$. If $V_{n}^{d+1} \mid m$, then $d+1=v_{2}\left(V_{n}^{d+1}\right) \leq v_{2}(m)=d$, a contradiction. Therefore $V_{n}^{d} \| m$.

For (v), assume that $V_{n}^{k+1} \mid U_{n m}, n \equiv 3(\bmod 6)$, and $4 \mid a^{2}+3 b$. Since $U_{6}=a\left(a^{2}+3 b\right) U_{3}$ and $4 \mid a^{2}+3 b$, we obtain $v_{2}\left(U_{6}\right) \geq v_{2}\left(U_{3}\right)+2$. By Lemma 6 , we have $v_{2}\left(U_{3}\right)=1$. Then $v_{2}\left(V_{n}\right)=$ $v_{2}\left(U_{6}\right)-v_{2}\left(U_{3}\right)=v_{2}\left(U_{6}\right)-1$ and

$$
v_{2}\left(V_{n}^{k}\right)+v_{2}\left(V_{n}\right)=v_{2}\left(V_{n}^{k+1}\right) \leq v_{2}\left(U_{n m}\right)=v_{2}(n m)+v_{2}\left(U_{6}\right)-1=v_{2}(m)+v_{2}\left(V_{n}\right) .
$$

So $v_{2}\left(V_{n}^{k}\right) \leq v_{2}(m)$. By (i), we obtain $V_{n}^{k} \mid m$. If $V_{n}^{k+1} \| U_{n m}$, then we obtain by (i) of Theorem 19 that $V_{n}^{k+1} \nmid m$, and so $V_{n}^{k} \| m$. This completes the proof.

4. Conclusions

We obtain exact divisibility theorems for the Lucas sequences of the first and second kinds, which complete a long investigation on this problem from 1970 to 2021.

Acknowledgments

We are grateful to both referees for their kind words and suggestions which improve the quality of this paper. Kritkhajohn Onphaeng receives a scholarship from Development and Promotion for Science and Technology Talents Project (DPST). Prapanpong Pongsriiam's research project is funded jointly by Faculty of Science Silpakorn University and the National Research Council of Thailand (NRCT), Grant Number NRCT5-RSA63021-02.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

References

1. A. Benjamin, J. Rouse, When does F_{m}^{L} divide F_{n} ? A combinatorial solution, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, 194, Congressus Numerantium, 2009, 53-58.
2. Y. Bugeaud, M. Mignotte, S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math., 163 (2006), 969-1018.
3. P. Cubre, J. Rouse, Divisibility properties of the Fibonacci entry point, Proc. Amer. Math. Soc., 142 (2014), 3771-3785.
4. V. E. Hoggatt Jr., M. Bicknell-Johnson, Divisibility by Fibonacci and Lucas squares, Fibonacci Quart., 15 (1977), 3-8.
5. Y. Matijasevich, Enumerable Sets are Diophantine, Proc. Academy Sci. USSR, 11 (1970), 354-358.
6. Y. Matijasevich, My collaboration with Julia Robison, Math. Intell., 14 (1992), 38-45.
7. Y. Matijasevich, Hilbert's Tenth Problem, MIT Press, 1996.
8. K. Onphaeng, P. Pongsriiam, Exact divisibility by powers of the integers in the Lucas sequence of the first kind, AIMS Math., 5 (2020), 6739-6748.
9. K. Onphaeng, P. Pongsriiam, Subsequences and divisibility by powers of the Fibonacci numbers, Fibonacci Quart., 52 (2014), 163-171.
10. K. Onphaeng, P. Pongsriiam, The converse of exact divisibility by powers of the Fibonacci and Lucas numbers, Fibonacci Quart., 56 (2018), 296-302.
11. C. Panraksa, A. Tangboonduangjit, p-adic valuation of Lucas iteration sequences, Fibonacci Quart., 56 (2018), 348-353.
12. A. Patra, G. K. Panda, T. Khemaratchatakumthorn, Exact divisibility by powers of the balancing and Lucas-balancing numbers, Fibonacci Quart., 59 (2021), 57-64.
13. P. Phunphayap, P. Pongsriiam, Explicit formulas for the p-adic valuations of Fibonomial coefficients, J. Integer Seq., 21 (2018), Article 18.3.1.
14. P. Phunphayap, P. Pongsriiam, Explicit formulas for the p-adic valuations of Fibonomial coefficients II, AIMS Math., 5 (2020), 5685-5699.
15. P. Pongsriiam, Exact divisibility by powers of the Fibonacci and Lucas numbers, J. Integer Seq., 17 (2014), Article 14.11.2.
16. P. Pongsriiam, Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation, Commun. Korean Math. Soc., 32 (2017), 511-522.
17. M. K. Sahukar, G. K. Panda, Diophantine equations with balancing-like sequences associated to Brocard-Ramanujan-type problem, Glas Mat., 54 (2019), 255-270.
18. C. Sanna, The p-adic valuation of Lucas sequences, Fibonacci Quart., 54 (2016), 118-124.
19. J. Seibert, P. Trojovský, On divisibility of a relation of the Fibonacci numbers, Int. J. Pure Appl. Math., 46 (2008), 443-448.
20. C. L. Stewart, On divisors of Lucas and Lehmer numbers, Acta Math., 211 (2013), 291-314.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
