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Abstract: Lucas sequences of the first and second kinds are, respectively, the integer sequences
(Un)n≥0 and (Vn)n≥0 depending on parameters a, b ∈ Z and defined by the recurrence relations U0 = 0,
U1 = 1, and Un = aUn−1 + bUn−2 for n ≥ 2, V0 = 2, V1 = a, and Vn = aVn−1 + bVn−2 for n ≥ 2. In this
article, we obtain exact divisibility results concerning Uk

n and Vk
n for all positive integers n and k. This

and our previous article extend many results in the literature and complete a long investigation on this
problem from 1970 to 2021.
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1. Introduction

Throughout this article, let a and b be relatively prime integers and let (Un)n≥0 and (Vn)n≥0 be the
Lucas sequences of the first and second kinds which are defined by the recurrence relations

U0 = 0, U1 = 1, Un = aUn−1 + bUn−2 for n ≥ 2,

V0 = 2, V1 = a, and Vn = aVn−1 + bVn−2 for n ≥ 2.

To avoid triviality, we also assume that b , 0 and α/β is not a root of unity where α and β are the
roots of the characteristic polynomial x2 − ax − b. In particular, this implies that α , β, α , −β, the
discriminant D = a2 + 4b , 0, Un , 0, and Vn , 0 for all n ≥ 1. If a = b = 1, then (Un)n≥0 reduces
to the sequence of Fibonacci numbers Fn; if a = 6 and b = −1, then (Un)n≥0 becomes the sequence of
balancing numbers; if a = 2 and b = 1, then (Un)n≥0 is the sequence of Pell numbers; and many other
famous integer sequences are just special cases of the Lucas sequences of the first and second kinds.
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The divisibility by powers of the Fibonacci numbers has attracted some attentions because it is used
in Matijasevich’s solution to Hilbert’s 10th problem [5–7]. More precisely, Matijasevich show that

F2
n | Fnm if and only if Fn | m. (1.1)

From that point, Hoggatt and Bicknell-Johnson [4], Benjamin and Rouse [1], Seibert and Trojovský
[19], Pongsriiam [15], Onphaeng and Pongsriiam [9, 10], Panraksa and Tangboonduangjit [11], and
Patra, Panda, and Khemaratchatakumthorn [12] have made some contributions on the extensions of
(1.1). For more details about the timeline and the development of this problem, we refer the reader
to the introduction of our previous article [8]. In fact, the most general results in this direction has
recently been given by us [8] as follows.

Theorem 1. [8, Theorem 10] Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, n ≥ 2, and Uk
n ‖ m. Then

(i) if a is odd and b is even, then Uk+1
n ‖ Unm;

(ii) if a is even and b is odd, then Uk+1
n ‖ Unm;

(iii) if a and b are odd and n . 3 (mod 6), then Uk+1
n ‖ Unm;

(iv) if a and b are odd, n ≡ 3 (mod 6), and Uk+1
n
2 - m, then Uk+1

n ‖ Unm;

(v) if a and b are odd, n ≡ 3 (mod 6), Uk+1
n
2 | m, and 2 ‖ a2 + 3b, then Uk+1

n ‖ Unm;

(vi) if a and b are odd, n ≡ 3 (mod 6), Uk+1
n
2 | m, and 4 | a2 + 3b, then Uk+t+1

n ‖ Unm, where

t = min({v2(U6) − 2} ∪ {yp − k | p is an odd prime factor of Un}) and

yp =

⌊
vp(m)
vp(Un)

⌋
for each odd prime p dividing Un.

Theorem 2. [8, Theorem 12] Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, n ≥ 2, and Uk+1
n ‖ Unm. Then

(i) if a is odd and b is even, then Uk
n ‖ m;

(ii) if a is even and b is odd, then Uk
n ‖ m;

(iii) if a and b are odd and n . 3 (mod 6), then Uk
n ‖ m;

(iv) if a and b are odd, n ≡ 3 (mod 6), and 2 ‖ a2 + 3b, then Uk
n ‖ m;

(v) if a and b are odd, n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) ≥ k, then Uk
n ‖ m;

(vi) if a and b are odd, n ≡ 3 (mod 6), 4 | a2 + 3b, and v2(m) < k, then

m is even, v2(m) ≥ k + 1 − v2(a2 + 3b), and Uv2(m)
n ‖ m.

For other related and recent results on Fibonacci, Lucas, balancing, and Lucas-balancing numbers,
see for example in [3, 13, 14, 16, 17, 20] and references there in.

In this article, we extend Theorems 1 and 2 to the case of Vn and the mix of Un and Vn. For
example, we obtain in Theorem 18 that if a and m are even, b is odd, and Vk+1

n ‖ Unm, then 2 | n implies
Vmin(k,v2(m))

n ‖ m; while 2 - n implies Vk
n | m and the exponent k can be replaced by k + 1 if and only if

Vk+2
n
2 | Unm.

2. Preliminaries and lemmas

In this section, we recall some definition and well known results, and give some useful lemmas
for the reader’s convenience. The order (or the rank) of appearance of n ∈ N in the Lucas sequence
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(Un)n≥0 is defined as the smallest positive integer m such that n | Um and is denoted by τ(n). The exact
divisibility mk ‖ n means that mk | n and mk+1 - n. The letter p is always a prime. For n ∈ N, the p-adic
valuation of n, denoted by vp(n) is the power of p in the prime factorization of n. We sometimes write
the expression such as a | b | c = d to mean that a | b, b | c, and c = d. For each x ∈ R, we write bxc
to denote the largest integer less than or equal to x. So bxc ≤ x < bxc + 1. We let D = a2 + 4b be the
discriminant and let α and β be the roots of the characteristic polynomial x2 − ax − b. Then it is well
known that if D , 0, then the Binet formula

Un =
αn − βn

α − β
and Vn = αn + βn holds for all n ≥ 0.

Next, we recall Sanna’s result [18] on the p-adic valuation of the Lucas sequence of the first kind.

Lemma 3. [18, Theorem 1.5] Let p be a prime number such that p - b. Then, for each positive integer
n,

vp(Un) =



vp(n) + vp(Up) − 1 if p | D and p | n,

0 if p | D and p - n,

vp(n) + vp(Upτ(p)) − 1 if p - D, τ(p) | n, and p | n,

vp(Uτ(p)) if p - D, τ(p) | n, and p - n,

0 if p - D and τ(p) - n.

In particular, if p is an odd prime such that p - b, then, for each positive integer n,

vp(Un) =


vp(n) + vp(Up) − 1 if p | D and p | n,

0 if p | D and p - n,

vp(n) + vp(Uτ(p)) if p - D and τ(p) | n,
0 if p - D and τ(p) - n.

From Lemma 3, and the fact that Vn = U2n/Un, we easily obtain the following result.

Lemma 4. If p is an odd prime and p - b. Then, for each positive integer n,

vp(Vn) =

vp(n) + vp(Uτ(p)) if p - D, τ(p) - n and τ(p) | 2n,

0 otherwise.

Proof. This follows from the application of Lemma 3, a straightforward calculation, and the fact that
vp(Vn) = vp

(
U2n
Un

)
= vp(U2n) − vp(Un). �

Next, we give some old and new lemmas that are needed in the proof of main theorems.

Lemma 5. Let n ≥ 1 and (a, b) = 1. If p | Un or p | Vn, then p - b. Consequently, (Un, b) = (Vn, b) = 1
for all n ≥ 1.

Proof. The case for Un is already given in [8, Lemma 7]. So suppose by way of contradiction that
p | Vn and p | b. Since Vn = aVn−1 + bVn−2 and (a, b) = 1, we obtain p | Vn−1. Repeating this argument,
we see that p | Vm for 1 ≤ m ≤ n. In particular, p | V1 = a contradicting (a, b) = 1. So if p | Vn, then
p - b, and the proof is complete. �
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Lemma 6. [8, Lemma 8] Let a and b be odd, (a, b) = 1, and v2(U6) ≥ v2(U3) + 2. Then v2(U3) = 1.

For convenience, we also calculate the 2-adic valuation of Un and Vn as follows.

Lemma 7. Assume that a is odd, b is even, and n ≥ 1. Then v2(Un) = v2(Vn) = 0.

Proof. Since U1 = 1 and U2 = a are odd, and Ur = aUr−1 + bUr−2 ≡ Ur−1 (mod 2) for r ≥ 3, it follows
by induction that Un is odd. Since Vn = U2n

Un
, Vn is also odd. This proves this lemma. �

Lemma 8. Assume that a is even, b is odd, and n ≥ 1. Then

v2(Un) =

v2(n) + v2(a) − 1 if 2 | n,
0 if 2 - n,

v2(Vn) =

1 if 2 | n,
v2(a) if 2 - n,

Proof. Since 2 | D, we obtain by Lemma 3 that for each n ∈ N, v2(Un) = v2(n) + v2(U2) − 1 if 2 | n and
v2(Un) = 0 if 2 - n. Since U2 = a, the formula for v2(Un) is verified. Then v2(Vn) can be obtained from
a straightforward calculation and the fact that Vn = U2n

Un
. This completes the proof. �

Lemma 9. Assume that a and b are odd, and n ≥ 1. Then

v2(Un) =


v2(n) + v2(U6) − 1 if n ≡ 0 (mod 6),
v2(U3) if n ≡ 3 (mod 6),
0 if n . 0 (mod 3),

v2(Vn) =


1 if n ≡ 0 (mod 6),
v2(U6) − v2(U3) if n ≡ 3 (mod 6),
0 if n . 0 (mod 3),

Proof. Since U1 and U2 are odd, and U3 = a2 + b is even, we have τ(2) = 3. In addition, 2 - D.
Furthermore, 3 | n and 2 | n if and only if n ≡ 0 (mod 6); 3 | n and 2 - n if and only if n ≡ 3 (mod 6).
Then applying Lemma 3 and the fact that Vn = U2n

Un
, we obtain the desired result. �

3. Main results

We begin with the simplest theorem of this paper.

Theorem 10. Assume that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, and m is odd. Then

(i) if Vk
n | m, then Vk+1

n | Vnm;
(ii) if Vk

n ‖ m, then Vk+1
n ‖ Vnm;

(iii) if Vk
n | Vnm, then Vk−1

n | m;
(iv) if Vk

n ‖ Vnm, then Vk−1
n ‖ m.
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Proof. We use Lemma 5 without reference. For (i), assume that Vk
n | m. Since m is odd, Vn is also odd,

and so v2(Vk+1
n ) = 0. If p > 2 and p | Vn, then p - b and we obtain by Lemma 4 that

vp(Vnm) = vp(mn) + vp(Uτ(p))
= vp(m) + vp(n) + vp(Uτ(p))
≥ vp(Vk

n) + vp(Vn) = vp(Vk+1
n ).

Therefore vp(Vnm) ≥ vp(Vk+1
n ) for all primes p dividing Vn. This implies Vk+1

n | Vnm.
For (ii), assume that Vk

n ‖ m. By (i), it is enough to show that Vk+2
n - Vnm. Since Vk+1

n - m, there
exists a prime p dividing Vn such that vp(Vk+1

n ) > vp(m). Here we remark that the letter p in the proof
of (i) and in the proof of (ii) may be different or may be the same. We believe that there is no ambiguity
since (i) is already done. Now since Vk

n | m and m is odd, Vn is also odd, and so v2(Vk+1
n ) = v2(m) = 0.

Therefore p is odd. By Lemma 4, we obtain

vp(Vnm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p))
= vp(m) + vp(Vn) < vp(Vk+1

n ) + vp(Vn) = vp(Vk+2
n ).

This shows that Vk+2
n - Vnm, as required.

For (iii), assume that Vk
n | Vnm. We show that vp(Vk−1

n ) ≤ vp(m) for all primes p dividing Vn. If p is
odd and p | Vn, then we apply Lemma 4 to obtain that

vp(Vn) + vp(Vk−1
n ) = vp(Vk

n) ≤ vp(Vnm) = vp(nm) + vp(Uτ(p))
= vp(m) + vp(n) + vp(Uτ(p))
= vp(m) + vp(Vn),

and so vp(Vk−1
n ) ≤ vp(m). It remains to show that v2(Vk−1

n ) ≤ v2(m). If a is odd and b is even, then it
follows from Lemma 7 that v2(Vk−1

n ) = 0 ≤ v2(m). Recall that (a, b) = 1, so a and b cannot be both
even. So we have the following two remaining cases: (a is even and b is odd) or (a and b are odd).

Case 1 a is even and b is odd. We will show that k must be 1, and so v2(Vk−1
n ) = 0 ≤ v2(m). If 2 | n,

then we apply Lemma 8 and the assumption that Vk
n | Vnm to obtain

1 ≤ k = v2(Vk
n) ≤ v2(Vnm) = 1.

Similarly, if 2 - n, then 2 - nm and we can use Lemma 8 again to obtain

kv2(a) = v2(Vk
n) ≤ v2(Vnm) = v2(a).

In any case, k = 1, as asserted.
Case 2 a and b are odd. We use Lemma 9 in this case. If n . 0 (mod 3), then v2(Vk−1

n ) = 0 ≤ v2(m).
If n ≡ 0 (mod 6), then nm ≡ 0 (mod 6), and so k = v2(Vk

n) ≤ v2(Vnm) = 1; thus v2(Vk−1
n ) = 0 ≤ v2(m).

We now suppose n ≡ 3 (mod 6). Since m is odd, nm ≡ 3 (mod 6). Therefore

k(v2(U6) − v2(U3)) = v2(Vk
n) ≤ v2(Vnm) = v2(U6) − v2(U3).

So k = 1 and thus v2(Vk−1
n ) = 0 ≤ v2(m). Hence vp(Vk−1

n ) ≤ vp(m) for all primes p dividing Vn, as
desired. This proves (iii).

For (iv), assume that Vk
n ‖ Vnm. By (iii), we have Vk−1

n | m. If Vk
n | m, then we obtain by (i) that

Vk+1
n | Vnm which contradicts Vk

n ‖ Vnm. Therefore Vk−1
n ‖ m. This completes the proof. �
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Remark 11. Let k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, and m is even. Let p be an odd prime dividing Vn. By
Lemma 4, we have p - D, τ(p) - n and τ(p) | 2n. Since m is even and τ(p) | 2n, we obtain τ(p) | mn.
By Lemma 4, we have p - Vnm, and so Vn - Vnm. This shows that m in Theorem 10 cannot be even
unless Vn = 2r for some r ∈ N.

Remark 12. The argument in Remark 11 works provided that there exists an odd prime p dividing Vn.
The case Vn = 2k for some k ∈ N ∪ {0} may occur but it is very rare. For example, when a = b = 1, we
know from the result of Bugeaud, Mignotte, and Siksek [2] that Vn is 1 or is a power of 2 if and only if
n = 0, 1, 3. Therefore we do not consider this rare case in our theorems.

Lemma 13. Let k,m, n ∈ N, a, b ∈ Z, and (a, b) = 1. Suppose m is odd and there exists an odd prime
p dividing Vn. Then vp(Unm) = 0 and Vn - Unm.

Proof. By Lemma 4, we have p - D, τ(p) - n and τ(p) | 2n. Therefore τ(p) is even and v2(τ(p)) =

v2(n) + 1. So τ(p) - nm. By Lemma 3, vp(Unm) = 0. Therefore Vn - Unm. �

Lemma 14. Let k,m, n ∈ N, a, b ∈ Z, and (a, b) = 1. Suppose there exists an odd prime p | Un. Then
vp(Vnm) = 0 and Un - Vnm.

Proof. By Lemma 3, we have (i) vp(Un) = vp(n) + vp(Up) − 1 if p | D and p | n, and (ii) vp(Un) =

vp(n) + vp(Uτ(p)) if p - D and τ(p) | n. For (i), we have vp(Un) > 0 and p | D, and therefore vp(Vnm) = 0
and Un - Vnm. For (ii), we have τ(p) | nm and so vp(Vnm) = 0 and Un - Vnm. �

Remark 15. By Lemma 13 and a reason similar to that in Remark 12, we do not consider the case
where m is odd in Theorems 16 to 20. In addition, by Lemma 14, we do not study the divisibility
relation such as Uk

n | Vnm.

We now have the exact divisibility results for Un and Vn separately. In the next theorem, we consider
them together. In other words, we investigate the relations of the type Vc

n | m implies Vd
n | Unm; and

Vc
n ‖ Unm implies Vd

n ‖ m. We divide the results into 5 theorems according to the parities of a and b.
From this point on, we apply Lemma 5 without reference.

Theorem 16. Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a is odd, b is even, and m is even. Then

(i) if Vk
n | m, then Vk+1

n | Unm;
(ii) if Vk

n ‖ m, then Vk+1
n ‖ Unm;

(iii) if Vk+1
n | Unm, then Vk

n | m;
(iv) if Vk+1

n ‖ Unm, then Vk
n ‖ m.

Proof. For (i), assume that Vk
n | m. We show that vp(Vk+1

n ) ≤ vp(Unm) for all primes p dividing Vn. By
Lemma 7, we have v2(Vn) = 0. So let p be an odd prime dividing Vn. By Lemma 4, p - D, τ(p) - n,
and τ(p) | 2n. Then τ(p) | nm. By Lemmas 3 and 4, we obtain

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p)) ≥ vp(Vk
n) + vp(n) + vp(Uτ(p))

= vp(Vk
n) + vp(Vn) = vp(Vk+1

n ), as required.

For (ii), assume that Vk
n ‖ m. By (i), it is enough to show that Vk+2

n - Unm. Since Vk+1
n - m, there

exists a prime p such that vp(Vk+1
n ) > vp(m). By Lemma 7, v2(Vk+1

n ) = 0, and so p , 2. Since p | Vn,
we know that p - D and τ(p) | nm. Therefore we obtain by Lemmas 3 and 4 that

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p)) = vp(m) + vp(Vn)
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< vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ), as desired.

For (iii), assume that Vk+1
n | Unm. By Lemma 7, v2(m) ≥ 0 = v2(Vk

n). If p is odd and p | Vn, then we
apply Lemmas 3 and 4 again to obtain

vp(Vn) + vp(Vk
n) = vp(Vk+1

n ) ≤ vp(Unm) = vp(nm) + vp(Uτ(p))
= vp(m) + vp(n) + vp(Uτ(p))
= vp(m) + vp(Vn).

This shows that vp(Vk
n) ≤ vp(m) for every prime p dividing Vn. So Vk

n | m.
For (iv), suppose Vk+1

n ‖ Unm. By (iii), it is enough to show that Vk+1
n - m. If Vk+1

n | m, we apply (i)
to obtain Vk+2

n | Unm contradicting Vk+1
n ‖ Unm. Therefore the proof is complete. �

Theorem 17. Assume that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a is even, b is odd and m is even. Let

t = min({v2(n) + v2(a) − 2} ∪ {yp − k | p is an odd prime factor of Vn}) and

yp =

⌊
vp(m)
vp(Vn)

⌋
for each odd prime p dividing Vn.

Then

(i) if Vk
n | m and 2 | n, then Vk+1

n | Unm;
if Vk

n | m and 2 - n, then Vk+1
n
2 | Unm;

if Vk
n | m, 2 - n, and v2(m) ≥ v2(Vk

n) + 1, then Vk+1
n | Unm;

if Vk
n | m, 2 | n, and Vk+1

n
2 | m, then t ≥ 0, v2(m) ≥ k, and Vk+t+1

n | Unm;

(ii) if Vk
n ‖ m, 2 | n and Vk+1

n
2 - m, then Vk+1

n ‖ Unm;

(iii) if Vk
n ‖ m, 2 | n and Vk+1

n
2 | m, then Vk+t+1

n ‖ Unm;
(iv) if Vk

n ‖ m, 2 - n and v2(m) = v2(Vk
n), then Vk

n ‖ Unm;
(v) if Vk

n ‖ m, 2 - n and v2(m) ≥ v2(Vk
n) + 1, then Vk+1

n ‖ Unm.

Proof. For (i), assume that Vk
n | m. If p is an odd prime and p | Vn, then p - D, τ(p) | nm, and we can

apply Lemmas 3 and 4, to obtain

vp(Unm) = vp(nm) + vp(Uτ(p))
= vp(m) + vp(n) + vp(Uτ(p))
≥ vp(Vk

n) + vp(Vn) = vp(Vk+1).

From this point on, we sometimes use Lemmas 3 and 4 without reference. Next, we consider v2(Vk+1
n )

and v2(Unm). If 2 | n, then we apply Lemma 8 to obtain

v2(Unm) = v2(nm) + v2(a) − 1 = v2(m) + v2(n) + v2(a) − 1
≥ v2(Vk

n) + v2(n) + v2(a) − 1
≥ v2(Vk

n) + 1 = v2(Vk
n) + v2(Vn) = v2(Vk+1

n ).
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This implies the first part of (i). Since m is even, 2 | nm. So if 2 - n, then we can still apply Lemma 8
to obtain

v2(Unm) = v2(nm) + v2(a) − 1
= v2(m) + v2(a) − 1 (3.1)

≥ v2(Vk
n) + v2(a) − 1 = v2(Vk

n) + v2(Vn) − 1 = v2

(
Vk+1

n

2

)
.

This implies the second part of (i). For the third part of (i), we assume that 2 - n and v2(m) ≥
v2(Vk

n) + 1, and then we repeat the argument used in the second part to obtain

v2(Unm) = v2(m) + v2(a) − 1 ≥ v2(Vk
n) + v2(a) = v2(Vk+1

n ).

Therefore vp(Unm) ≥ vp(Vk+1
n ) for all primes p, which implies the desired result. Next, we prove the

last part of (i). Assume that Vk
n | m, 2 | n, and Vk+1

n
2 | m. Since a and n are even, v2(n) + v2(a) − 2 ≥ 0. In

addition, vp(m) ≥ vp(Vk
n) = kvp(Vn), and so yp ≥ k. Therefore t ≥ 0 and t + 1 ≤ v2(n) + v2(a) − 1. By

Lemma 8, we have vp(Vn) = 1, and therefore vp(m) ≥ k and

v2(Unm) = v2(nm) + v2(a) − 1 = v2(m) + v2(n) + v2(a) − 1 ≥ k + t + 1 = v2(Vk+t+1
n ).

If p is an odd prime and p | Vn, then

vp(Unm) = vp(m) + vp(n) + vp(Uτ(p)) = vp(m) + vp(Vn) ≥ ypvp(Vn) + vp(Vn)
= (yp + 1)vp(Vn) ≥ (k + t + 1)vp(Vn) = vp(Vk+t+1

n ).

Hence vp(Unm) ≥ vp(Vk+t+1
n ) for all primes p dividing Vn. Thus Vk+t+1

n | Unm, as desired.
Next, we prove (ii). Assume that Vk

n ‖ m, 2 | n and Vk+1
n
2 - m. By (i), it is enough to show that

Vk+2
n - Unm. By Lemma 8, we know that v2(Vn) = 1. Then v2(m) ≥ v2(Vk

n) = v2

(
Vk+1

n
2

)
. Since Vk+1

n
2 - m,

there exists an odd prime p dividing Vn such that vp(Vk+1
n ) > vp(m). Then p - D, τ(p) | nm, and

vp(Vk+2
n ) = vp(Vk+1

n ) + vp(Vn) > vp(m) + vp(Vn)
= vp(m) + vp(n) + vp(Uτ(p))
= vp(Unm).

This implies Vk+2
n - Unm.

For (iii), assume that Vk
n ‖ m, 2 | n, and Vk+1

n
2 | m. By (i), we obtain t ≥ 0, v2(m) ≥ k, and Vk+t+1

n | Unm.

So it remains to show that Vk+t+2
n - Unm. We first observe that since Vk+1

n
2 | m, we obtain vp(Vk+1

n ) ≤ vp(m)
for every odd prime p. If v2(m) ≥ k + 1, then v2(m) ≥ v2(Vk+1

n ) which implies Vk+1
n | m contradicting

the assumption Vk
n ‖ m. Therefore v2(m) = k. Next, we show that Vk+t+2

n - Unm. If t = yp − k for some
odd prime p dividing Vn, then we apply Lemmas 3 and 4 to obtain

vp(Unm) = vp(nm) + vp(Uτ(p))

= vp(m) + vp(Vn) =

(
vp(m)
vp(Vn)

+ 1
)

vp(Vn)
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< (yp + 2)vp(Vn) = (k + t + 2)vp(Vn) = vp(Vk+t+2
n ),

and so Vk+t+2
n - Unm. If t = v2(n) + v2(a) − 2, then we obtain by Lemma 8 that

v2(Unm) = v2(nm) + v2(a) − 1 = v2(m) + v2(n) + v2(a) − 1 = k + t + 1 < v2(Vk+t+2
n ),

and so Vk+t+2
n - Unm. This proves (iii).

Next, we prove (iv). Assume that Vk
n ‖ m, 2 - n and v2(m) = v2(Vk

n). By (i), we have Vk+1
n
2 | Unm.

To show that Vk
n | Unm, it suffices to prove that v2(Vk

n) ≤ v2(Unm). Recall from (3.1) in the proof of the
second part of (i) that

v2(Unm) = v2(m) + v2(a) − 1 = v2(Vk
n) + v2(a) − 1 ≥ v2(Vk

n),

and
v2(Unm) = v2(m) + v2(a) − 1 = v2(Vk

n) + v2(Vn) − 1 < v2(Vk+1
n ).

So Vk
n | Unm and Vk+1

n - Unm. Thus Vk
n ‖ Unm.

For (v), assume that Vk
n ‖ m, 2 - n, and v2(m) ≥ v2(Vk

n)+1. By (i), it suffices to show that Vk+2
n - Unm.

Since Vk+1
n - m, there exists a prime p dividing Vn such that vp(Vk+1

n ) > vp(m). If p = 2, then we obtain
by Lemma 8 that

v2(Unm) = v2(m) + v2(a) − 1 < v2(Vk+1
n ) + v2(Vn) − 1 < v2(Vk+2

n ),

and so Vk+2
n - Unm. If p > 2, then we obtain

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ),

which implies Vk+2
n - Unm. This completes the proof. �

From this point on, we apply Lemmas 3, 4, 5, and 8 without reference.

Theorem 18. Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a is even, b is odd, and m is even. Then

(i) for all odd primes p, if vp(Vk+1
n ) ≤ vp(Unm), then vp(Vk

n) ≤ vp(m);
(ii) if Vk+1

n | Unm and 2 | n, then Vmin (k,v2(m))
n | m;

if Vk+1
n ‖ Unm and 2 | n, then Vmin (k,v2(m))

n ‖ m;
(iii) if Vk+1

n | Unm and 2 - n, then Vk
n | m;

(iv) if Vk+1
n ‖ Unm, 2 - n and Vk+2

n
2 - Unm, then Vk

n ‖ m;

(v) if Vk+1
n ‖ Unm, 2 - n, and Vk+2

n
2 | Unm, then Vk+1

n ‖ m.

Proof. For (i), assume that p is an odd prime and vp(Vk+1
n ) ≤ vp(Unm). If p | Vn, then

vp(Vn) + vp(Vk
n) = vp(Vk+1

n ) ≤ vp(Unm) = vp(nm) + vp(Uτ(p))
= vp(m) + vp(n) + vp(Uτ(p))
= vp(m) + vp(Vn),

which implies (i). By (i), we only need to consider the 2-adic valuation in the proofs of (ii), (iii), (iv),
and (v).
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For (ii), assume that Vk+1
n | Unm and 2 | n. For convenience, let c = min(k, v2(m)). If v2(m) ≥ k, then

v2(Vk
n) = k ≤ v2(m), and so Vk

n | m. If v2(m) < k, then v2(Vv2(m)
n ) = v2(m) and vp(Vv2(m)

n ) ≤ vp(Vk
n) ≤

vp(m) for all odd primes p, and therefore Vv2(m)
n | m. In any case, we obtain Vc

n | m. This proves the first
part of (ii). Suppose further that Vk+1

n ‖ Unm but Vc+1
n | m. Then

v2(m) ≥ v2(Vc+1
n ) = min(k, v2(m)) + 1,

which implies c = k. Then Vk+1
n = Vc+1

n | m. By (i) of Theorem 17, we obtain Vk+2
n | Unm contradicting

Vk+1
n ‖ Unm. This completes the proof of (ii).

For (iii), assume that Vk+1
n | Unm and 2 - n. Then

v2(a) + v2(Vk
n) = v2(Vk+1

n ) ≤ v2(Unm) = v2(nm) + v2(a) − 1 = v2(m) + v2(a) − 1.

Therefore v2(Vk
n) < v2(m), and so Vk

n | m.
For (iv), assume that Vk+1

n ‖ Unm, 2 - n, and Vk+2
n
2 - Unm. By (iii), Vk

n | m. If Vk+1
n | m, then we obtain

from (i) of Theorem 17 that Vk+2
n
2 | Unm, a contradiction. So Vk

n ‖ m.

For (v), assume that Vk+1
n ‖ Unm, 2 - n, and Vk+2

n
2 | Unm. Then

v2(Vk+1
n ) + v2(a) − 1 = v2(Vk+2

n ) − 1 ≤ v2(Unm) = v2(nm) + v2(a) − 1 = v2(m) + v2(a) − 1,

and so v2(Vk+1
n ) ≤ v2(m). Therefore Vk+1

n | m. If Vk+2
n | m, we obtain from (i) of Theorem 17 that

Vk+3
n
2 | Unm, which implies Vk+2

n | Unm contradicting Vk+1
n ‖ Unm. Therefore Vk+1

n ‖ m and the proof is
complete. �

Theorem 19. Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a and b are odd, and m is even. Let
c = v2(U6) − 1,

t = min({v2(n) + c − 1} ∪ {yp − k | p is an odd prime factor of Vn}),
s = min({c − 1} ∪ {yp − k | p is an odd prime factor of Vn}), and

yp =

⌊
vp(m)
vp(Vn)

⌋
for each odd prime p dividing Vn.

Then

(i) if Vk
n | m, then Vk+1

n | Unm;
(ii) if Vk

n ‖ m and n . 0 (mod 3), then Vk+1
n ‖ Unm;

(iii) if Vk
n ‖ m, n ≡ 0 (mod 6) and Vk+1

n
2 - m, then Vk+1

n ‖ Unm;

(iv) if Vk
n | m, n ≡ 0 (mod 6), and Vk+1

n
2 | m, then t ≥ 0 and Vk+t+1

n | Unm;

if Vk
n ‖ m, n ≡ 0 (mod 6) and vk+1

n
2 | m, then Vk+t+1

n ‖ Unm;

(v) if Vk
n ‖ m, n ≡ 3 (mod 6), 2 ‖ a2 + 3b and Vk+1

n
2 - m, then Vk+1

n ‖ Unm;

(vi) if Vk
n | m, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and Vk+1

n
2 | m, then s ≥ 0 and Vk+s+1

n | Unm;

if Vk
n ‖ m, n ≡ 3 (mod 6), 2 ‖ a2 + 3b and Vk+1

n
2 | m, then Vk+s+1

n ‖ Unm;

(vii) if Vk
n ‖ m, n ≡ 3 (mod 6), 4 | a2 + 3b and Vk+1

n
2c - m, then Vk+1

n ‖ Unm;
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(viii) if Vk
n | m, n ≡ 3 (mod 6), 4 | a2 + 3b and Vk+1

n
2c | m, then Vk+2

n | 2cUnm;

if Vk
n ‖ m, n ≡ 3 (mod 6), 4 | a2 + 3b and Vk+1

n
2c | m, then Vk+2

n ‖ 2cUnm.

Proof. As usual, to prove that Vd
n | Unm, we show that vp(Vd

n ) ≤ vp(Unm) for all primes p dividing Vn.
Similarly, if we would like to prove that Vd

n - Unm, then we show that vp(Vd
n ) > vp(Unm) for some prime

p. If p is odd, then we apply Lemmas 3 and 4; if p = 2, then we use Lemma 9; and we will do this
without further reference. For (i), assume that Vk

n | m. If p is odd and p | Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p)) ≥ vp(Vk
n) + vp(Vn) = vp(Vk+1).

So it remains to show that v2(Unm) ≥ v2(Vk+1
n ). If n . 0 (mod 3), then v2(Vk+1

n ) = 0 ≤ v2(Unm). So
suppose that n ≡ 0 (mod 3). Then nm ≡ 0 (mod 6) and so

v2(Unm) = v2(nm) + v2(U6) − 1 ≥ v2(Vk
n) + v2(n) + v2(U6) − 1. (3.2)

Since U3 = a2 + b is even and U6 = a(a2 + 3b)U3, we know that v2(U3) ≥ 1 and v2(U6) ≥ 1. So if n ≡ 0
(mod 6), then v2(n) ≥ 1 and (3.2) implies that

v2(Unm) ≥ v2(Vk
n) + v2(U6) ≥ v2(Vk

n) + v2(Vn) = v2(Vk+1
n ).

If n ≡ 3 (mod 6), then (3.2) implies

v2(Unm) ≥ v2(Vk
n) + v2(U6) − 1 ≥ v2(Vk

n) + v2(U6) − v2(U3) = v2(Vk+1
n ).

In any case, v2(Unm) ≥ v2(Vk+1
n ). This proves (i).

For (ii), assume that Vk
n ‖ m and n . 0 (mod 3). By (i), it is enough to show that Vk+2

n - Unm. Since
Vk+1

n - m, there exists a prime p dividing Vn such that vp(Vk+1
n ) > vp(m). Since v2(Vk+1

n ) = 0, we see
that p , 2. Then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(n) + vp(Uτ(p)) < vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ), as desired.

For (iii), assume that Vk
n ‖ m, n ≡ 0 (mod 6), and Vk+1

n
2 - m. By (i), it is enough to show that

Vk+2
n - Unm. Since Vk+1

n
2 - m and v2(Vk+1

n
2 ) = v2(Vk

n) ≤ v2(m), we see that there exists an odd prime p
dividing Vn such that vp(Vk+1

n ) > vp(m). Then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ).

Therefore Vk+2
n - Unm, as required.

For (iv), we first assume that Vk
n | m, n ≡ 0 (mod 6), and Vk+1

n
2 | m. Since v2(n) ≥ 1 and v2(U6) ≥

v2(U3) ≥ 1, it is not difficult to see that t ≥ 0. If p is an odd prime dividing Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn)
≥ ypvp(Vn) + vp(Vn) = (yp + 1)vp(Vn)
≥ (k + t + 1)vp(Vn) = vp(Vk+t+1

n ).

In addition,

v2(Unm) = v2(nm) + v2(U6) − 1 = v2(m) + v2(n) + v2(U6) − 1
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≥ v2(Vk
n) + t + 1 = k + t + 1 = v2(Vk+t+1

n ).

Therefore Vk+t+1
n | Unm. This proves the first part of (iv). Next, assume further that Vk

n ‖ m. It is enough
to show that Vk+t+2

n - Unm. Recall that yp =
⌊ vp(m)

vp(Vn)

⌋
, so vp(m) < (yp + 1)vp(Vn). So if t = yp − k for some

odd prime p dividing Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < (yp + 2)vp(Vn) = (k + t + 2)vp(Vn) = vp(Vk+t+2
n ),

which implies Vk+t+2
n - Unm. So suppose t = v2(n) + v2(U6) − 2. Since Vk+1

n
2 | m, we see that vp(m) ≥

vp(Vk+1
n ) for all odd primes p. If v2(m) ≥ k + 1, then v2(m) ≥ v2(Vk+1

n ),which implies Vk+1
n | m

contradicting the assumption Vk
n ‖ m. Therefore v2(m) ≤ k. Then

v2(Unm) = v2(nm) + v2(U6) − 1 = v2(m) + v2(n) + v2(U6) − 1 ≤ k + t + 1 < v2(Vk+t+2
n ).

Therefore, Vk+t+2
n - Unm as required.

For (v), assume that Vk
n ‖ m, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and Vk+1

n
2 - m. By (i), it suffies to show

that Vk+2
n - Unm. Since U6 = a(a2 + 3b)U3 and 2 ‖ a2 + 3b, we obtain v2(Vn) = v2(U6) − v2(U3) = 1.

Since Vk+1
n
2 - m and v2

(
Vk+1

n
2

)
= v2(Vk

n) ≤ v2(m), there exists an odd prime p dividing Vn such that

vp(Vk+1
n ) > vp(m). Therefore

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ), as desired.

For (vi), assume that Vk
n | m, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and Vk+1

n
2 | m. Since a2 + 3b and U3 are

even, and U6 = a(a2 + 3b)U3, we have v2(U6) − 2 ≥ 0. Since Vk
n | m, we have yp ≥ k for all odd primes

p dividing Vn. Therefore s ≥ 0. By the same argument as in the proof of (v), we obtain v2(Vn) = 1. In
addition, v2(m) ≥ v2(Vk

n) = k and vp(Vk+1
n ) = vp(Vk+1

n
2 ) ≤ vp(m) for every odd prime p. If Vk

n ‖ m and
v2(m) ≥ k + 1 = v2(Vk+1

n ), then Vk+1
n | m which is a contradiction. Therefore,

if Vk
n ‖ m, then v2(m) = k. (3.3)

We will apply (3.3) later. For now, we only need to apply v2(m) ≥ k. We obtain

v2(Unm) = v2(nm) + v2(U6) − 1 = v2(m) + v2(U6) − 1 ≥ k + v2(U6) − 1 ≥ k + s + 1 = v2(Vk+s+1
n ).

If p > 2 and p | Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) ≥ (yp + 1)vp(Vn) ≥ (k + s + 1)vp(Vn) = vp(Vk+s+1
n ).

This implies Vk+s+1
n | Unm. Next, assume further that Vk

n ‖ m. It remains to show that Vk+s+2
n - Unm.

By the definition of yp, we know that (yp + 1)vp(Vn) > vp(m). So if s = yp − k for some odd prime p
dividing Vn, then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < (yp + 2)vp(Vn) = (k + s + 2)vp(Vn) = vp(Vk+s+2
n ),

which implies Vk+s+2
n - Unm. By (3.3), we know that v2(m) = k. So if s = v2(U6) − 2, then

v2(Unm) = v2(nm) + v2(U6) − 1 = v2(m) + v2(U6) − 1 = k + s + 1 < v2(Vk+s+2
n ).
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So in any case, Vk+s+2
n - Unm, as required.

For (vii), we let c = v2(U6)−1 and assume that Vk
n ‖ m, n ≡ 3 (mod 6), 4 | a2 +3b, and Vk+1

n
2c - m. By

(i), it is enough to show that Vk+2
n - Unm. Since 4 | a2 + 3b and U6 = a(a2 + 3b)U3, we have v2(U6) ≥

v2(U3) + 2. By Lemma 6, we obtain v2(U3) = 1, and so v2(Vn) = v2(U6) − v2(U3) = v2(U6) − 1 = c.
Since Vk+1

n
2c - m and

v2

(
Vk+1

n

2c

)
= (k + 1)v2(Vn) − v2(Vn) = v2(Vk

n) ≤ v2(m),

there exists an odd prime p dividing Vn such that vp(Vk+1
n ) > vp(m). Then

vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) < vp(Vk+1
n ) + vp(Vn) = Vp(Vk+2

n ).

Therefore Vk+2
n - Unm.

For (viii), assume that Vk
n | m , n ≡ 3 (mod 6), 4 | a2 + 3b, and Vk+1

n
2c | m. Then for each odd prime p

dividing Vn, we have

vp(Vk+1
n ) = vp

(
Vk+1

n

2c

)
≤ vp(m). (3.4)

Since 4 | a2 +3b and U6 = a(a2 +3b)U3, we obtain v2(U6) ≥ v2(U3)+2. By the same argument as in the
proof of (vii), we obtain v2(Vn) = v2(U6) − 1 = c. Since Vk

n | m, we see that v2(m) ≥ v2(Vk
n) = kv2(Vn).

If Vk
n ‖ m and v2(m) ≥ (k + 1)v2(Vn), then vp(m) ≥ vp(Vk+1

n ) for all primes p, and so Vk+1
n | m, a

contradiction. Therefore
v2(m) ≥ kv2(Vn), (3.5)

and
if Vk

n ‖ m, then kv2(Vn) ≤ v2(m) < (k + 1)v2(Vn). (3.6)

We will apply (3.6) later. For now (3.5) is good enough. We obtain

v2(2cUnm) = v2(U6) − 1 + v2(Unm) = v2(U6) − 1 + v2(nm) + v2(U6) − 1
= 2(v2(U6) − 1) + v2(m)
≥ 2(v2(U6) − 1) + kv2(Vn)
= 2(v2(U6) − 1) + k(v2(U6) − 1)
= (k + 2)(v2(U6) − 1) = v2(Vk+2

n ).

If p > 2 and p | Vn, then

vp(2cUnm) = vp(Unm) = vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn) ≥ vp(Vk+1
n ) + vp(Vn) = vp(Vk+2

n ),

where the last inequality is obtained from (3.4). This implies that Vk+2
n | 2cUnm. So the first part of

(viii) is proved. Next, assume further that Vk
n ‖ m. To prove the second part, it now suffices to show

that Vk+3
n - 2cUnm. We have

v2(2cUnm) = v2(U6) − 1 + v2(Unm)
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= v2(U6) − 1 + v2(nm) + v2(U6) − 1
= 2(v2(U6) − 1) + v2(m)
< 2(v2(U6) − 1) + (k + 1)(v2(U6) − 1)
= (k + 3)(v2(U6) − 1) = v2(Vk+3

n ),

where the inequality is obtained form (3.6) and the fact that v2(Vn) = v2(U6) − 1. This completes the
proof. �

Theorem 20. Suppose that k,m, n ∈ N, a, b ∈ Z, (a, b) = 1, a and b are odd and m is even. Then

(i) for every odd prime p dividing Vn, if vp(Vk+1
n ) ≤ vp(Unm), then vp(Vk

n) ≤ vp(m) ;
(ii) if Vk+1

n | Unm and n . 0 (mod 3), then Vk
n | m;

if Vk+1
n ‖ Unm and n . 0 (mod 3), then Vk

n ‖ m;
(iii) if Vk+1

n | Unm, n ≡ 0 (mod 6), and v2(m) ≥ k, then Vk
n | m;

if Vk+1
n ‖ Unm, n ≡ 0 (mod 6), and v2(m) ≥ k, then Vk

n ‖ m;
if Vk+1

n | Unm, n ≡ 0 (mod 6), and v2(m) < k, then Vv2(m)
n ‖ m;

(iv) if Vk+1
n | Unm, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and v2(m) ≥ k, then Vk

n | m;
if Vk+1

n ‖ Unm, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and v2(m) ≥ k, then Vk
n ‖ m;

if Vk+1
n | Unm, n ≡ 3 (mod 6), 2 ‖ a2 + 3b, and v2(m) < k, then Vv2(m)

2 ‖ m;
(v) if Vk+1

n | Unm, n ≡ 3 (mod 6), and 4 | a2 + 3b, then Vk
n | m;

if Vk+1
n ‖ Unm, n ≡ 3 (mod 6), and 4 | a2 + 3b, then Vk

n ‖ m.

Proof. We apply Lemmas 3, 4, and 9 throughout the proof without reference. For (i), assume that p is
an odd prime dividing Vn and vp(Vk+1

n ) ≤ vp(Unm). Then

vp(Vn) + vp(Vk
n) = vp(Vk+1

n ) ≤ vp(Unm) ≤ vp(nm) + vp(Uτ(p)) = vp(m) + vp(Vn),

which implies (i). Therefore we only need to consider the 2-adic valuation in the proof of (ii) to (v).
For (ii), assume that Vk+1

n | Unm and n . 0 (mod 3). Since v2(Vk
n) = 0 ≤ v2(m), we obtain by (i) that

Vk
n | m. Suppose futher that Vk+1

n ‖ Unm. If Vk+1
n | m, then (i) of Theorem 19 implies Vk+2

n | Unm, which
contradicts Vk+1

n ‖ Unm, and so Vk
n ‖ m.

For (iii), assume that Vk+1
n | Unm and n ≡ 0 (mod 6).

Case 1 v2(m) ≥ k. Then v2(Vk
n) = k ≤ v2(m). So we obtain by (i) that Vk

n | m. If Vk+1
n ‖ Unm, then we

obtain by (i) of Theorem 19 that Vk+1
n - m, and so Vk

n ‖ m. This proves (iii) in the case v2(m) ≥ k.
Case 2 v2(m) < k. For convenience, let d = v2(m). Since v2(Vd

n ) = d = v2(m) and vp(Vd
n ) ≤ vp(Vk

n) ≤
vp(m) for every odd prime p dividing Vn, we obtain Vd

n | m. If Vd+1
n | m, then d+1 = v2(Vd+1

n ) ≤ v2(m) =

d, a contradiction. So Vd
n ‖ m.

For (iv), assume that Vk+1
n | Unm, n ≡ 3 (mod 6), and 2 ‖ a2 + 3b. Since U6 = a(a2 + 3b)U3 and

2 ‖ a2 + 3b, we obtain v2(Vn) = v2(U6) − v2(U3) = 1.
Case 1 v2(m) ≥ k. Then v2(Vk

n) = k ≤ v2(m), and so we obtain by (i) that Vk
n | m. If Vk+1

n ‖ Unm, then
we obtain by (i) of Theorem 19 that Vk

n ‖ m. This proves (iv) in the case v2(m) ≥ k.
Case 2 v2(m) < k. For convenience, let d = v2(m). Then v2(Vd

n ) = d = v2(m) and vp(Vd
n ) ≤ vp(Vk

n) ≤
vp(m). Therefore Vd

n | m. If Vd+1
n | m, then d + 1 = v2(Vd+1

n ) ≤ v2(m) = d, a contradiction. Therefore
Vd

n ‖ m.
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11747

For (v), assume that Vk+1
n | Unm, n ≡ 3 (mod 6), and 4 | a2 + 3b. Since U6 = a(a2 + 3b)U3 and

4 | a2 + 3b, we obtain v2(U6) ≥ v2(U3) + 2. By Lemma 6, we have v2(U3) = 1. Then v2(Vn) =

v2(U6) − v2(U3) = v2(U6) − 1 and

v2(Vk
n) + v2(Vn) = v2(Vk+1

n ) ≤ v2(Unm) = v2(nm) + v2(U6) − 1 = v2(m) + v2(Vn).

So v2(Vk
n) ≤ v2(m). By (i), we obtain Vk

n | m. If Vk+1
n ‖ Unm, then we obtain by (i) of Theorem 19 that

Vk+1
n - m, and so Vk

n ‖ m. This completes the proof. �

4. Conclusions

We obtain exact divisibility theorems for the Lucas sequences of the first and second kinds, which
complete a long investigation on this problem from 1970 to 2021.
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