Research article

Einstein solitons with unit geodesic potential vector field

  • Received: 01 April 2021 Accepted: 17 May 2021 Published: 20 May 2021
  • MSC : 53C21, 53E99

  • We obtain some results on almost Einstein solitons with unit geodesic potential vector field and provide necessary and sufficient conditions for the soliton to be trivial.

    Citation: Adara M. Blaga, Sharief Deshmukh. Einstein solitons with unit geodesic potential vector field[J]. AIMS Mathematics, 2021, 6(8): 7961-7970. doi: 10.3934/math.2021462

    Related Papers:

  • We obtain some results on almost Einstein solitons with unit geodesic potential vector field and provide necessary and sufficient conditions for the soliton to be trivial.



    加载中


    [1] G. Catino, L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. Theor., 132 (2016), 66–94. doi: 10.1016/j.na.2015.10.021
    [2] G. Catino, L. Mazzieri, S. Mongodi, Rigidity of gradient Einstein shrinkers, Commun. Contemp. Math., 17 (2015), 1550046. doi: 10.1142/S0219199715500467
    [3] S. K. Chaubey, Characterization of perfect fluid spacetimes admitting gradient $\eta$-Ricci and gradient Einstein solitons, J. Geom. Phys., 162 (2021), 104069. doi: 10.1016/j.geomphys.2020.104069
    [4] G. Huang, Integral pinched gradient shrinking $\rho$-Einstein solitons, J. Math. Anal. Appl., 451 (2017), 1045–1055. doi: 10.1016/j.jmaa.2017.02.051
    [5] C. K. Mondal, A. A. Shaikh, Some results in $\eta$-Ricci soliton and gradient $\rho$-Einstein soliton in a complete Riemannian manifold, Commun. Korean Math. Soc., 34 (2019), 1279–1287.
    [6] X. Yi, A. Zhu, The curvature estimate of gradient $\rho$-Einstein soliton, J. Geom. Phys., 162 (2021), 104063. doi: 10.1016/j.geomphys.2020.104063
    [7] L. F. Wang, On gradient quasi-Einstein solitons, J. Geom. Phys., 123 (2018), 484–494. doi: 10.1016/j.geomphys.2017.09.002
    [8] S. Deshmukh, H. Alsodais, N. Bin Turki, Some Results on Ricci Almost Solitons, Symmetry, 13 (2021), 430. doi: 10.3390/sym13030430
    [9] S. Pigola, M. Rigoli, M. Rimoldi, A. G. Setti, Ricci almost solitons, Ann. Scuola. Norm. Sci., 10 (2011), 757–799.
    [10] B. Chow, P. Lu, L. Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, 2006.
    [11] K. Yano, Integral formulas in Riemannian geometry, Marcel Dekker Inc., New York, USA, 1970.
    [12] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306.
    [13] P. Petersen, Riemannian geometry, Springer, 1997.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2533) PDF downloads(141) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog