Research article

Dynamical behaviors to the coupled Schrödinger-Boussinesq system with the beta derivative

  • Received: 22 March 2021 Accepted: 30 April 2021 Published: 19 May 2021
  • MSC : 35Q41, 35Q60

  • In this paper, the modified auxiliary expansion method is used to construct some new soliton solutions of coupled Schrödinger-Boussinesq system that includes beta derivative. The new exact solution is obtained have a hyperbolic function, trigonometric function, exponential function, and rational function. These solutions might appreciate in laser and plasma sciences. It is shown that this method, provides a straightforward and powerful mathematical tool for solving the nonlinear problems. Moreover, the linear stability of this nonlinear system is analyzed.

    Citation: Hajar F. Ismael, Hasan Bulut, Haci Mehmet Baskonus, Wei Gao. Dynamical behaviors to the coupled Schrödinger-Boussinesq system with the beta derivative[J]. AIMS Mathematics, 2021, 6(7): 7909-7928. doi: 10.3934/math.2021459

    Related Papers:

  • In this paper, the modified auxiliary expansion method is used to construct some new soliton solutions of coupled Schrödinger-Boussinesq system that includes beta derivative. The new exact solution is obtained have a hyperbolic function, trigonometric function, exponential function, and rational function. These solutions might appreciate in laser and plasma sciences. It is shown that this method, provides a straightforward and powerful mathematical tool for solving the nonlinear problems. Moreover, the linear stability of this nonlinear system is analyzed.



    加载中


    [1] O. A. Ilhan, A. Esen, H. Bulut, H. M. Baskonus, Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves, Results Phys., 12 (2019), 1712–1715. doi: 10.1016/j.rinp.2019.01.059
    [2] H. F. Ismael, Carreau-Casson fluids flow and heat transfer over stretching plate with internal heat source/sink and radiation, Int. J. Adv. Appl. Sci. J., 4 (2017), 11–15.
    [3] A. Zeeshan, H. F. Ismael, M. A. Yousif, T. Mahmood, S. U. Rahman, Simultaneous effects of slip and wall stretching/shrinking on radiative flow of magneto nanofluid through porous medium, J. Magn., 23 (2018), 491–498. doi: 10.4283/JMAG.2018.23.4.491
    [4] H. F. Ismael, K. K. Ali, MHD casson flow over an unsteady stretching sheet, Adv. Appl. Fluid Mech., 20 (2017), 533–541.
    [5] M. A. Yousif, B. A. Mahmood, K. K. Ali, H. F. Ismael, Numerical simulation using the homotopy perturbation method for a thin liquid film over an unsteady stretching sheet, Int. J. Pure Appl. Math., 107 (2016), 289–300.
    [6] H. M. Baskonus, H. Bulut, On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method, Open Math., 13 (2015), 4255–4270.
    [7] K. K. Ali, R. Yilmazer, H. M. Baskonus, H. Bulut, New wave behaviors and stability analysis of the Gilson-Pickering equation in plasma physics, Indian J. Phys., 95 (2021), 1003–1008. doi: 10.1007/s12648-020-01773-9
    [8] H. Ismael, H. Bulut, On the wave solutions of (2+1)-dimensional time-fractional Zoomeron equation, Konuralp J. Math., 8 (2020), 410–418.
    [9] C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel'd-Sokolov systems, Opt. Quant. Electron., 50 (2018), 1–11. doi: 10.1007/s11082-017-1266-2
    [10] H. Bulut, T. A. Sulaiman, H. M. Baskonus, Dark, bright optical and other solitons with conformable space-time fractional second-order spatiotemporal dispersion, Optik, 163 (2018), 1–7. doi: 10.1016/j.ijleo.2018.02.086
    [11] J. Manafian, M. Foroutan, A. Guzali, Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model, Eur. Phys. J. Plus, 132 (2017), 1–22. doi: 10.1140/epjp/i2017-11280-8
    [12] W. Liu, D. Q. Qiu, Z. W. Wu, J. S. He, Dynamical behavior of solution in integrable nonlocal Lakshmanan-Porsezian-Daniel equation, Commun. Theor. Phys., 65 (2016), 671. doi: 10.1088/0253-6102/65/6/671
    [13] X. B. Wang, B. Han, Vector nonlinear waves in a two-component Bose-Einstein condensate system, J. Phys. Soc. Japan, 89 (2020), 124003. doi: 10.7566/JPSJ.89.124003
    [14] A. Biswas, A. H. Kara, R. T. Alqahtani, M. Z. Ullah, H. Triki, M. Belic, Conservation laws for optical solitons of lakshmanan-porsezian-daniel model, Proc. Roman. Acad. Ser. A, 19 (2018), 39–44.
    [15] H. M. Baskonus, G. Yel, H. Bulut, Novel wave surfaces to the fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation, AIP Conf. Proc., 1863 (2017), 560084. doi: 10.1063/1.4992767
    [16] H. M. Baskonus, H. Bulut, Exponential prototype structures for (2+1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics, Waves Random Complex Media, 26 (2016), 189–196. doi: 10.1080/17455030.2015.1132860
    [17] H. M. Baskonus, H. Bulut, On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method, Waves Random Complex Media, 25 (2015), 720–728. doi: 10.1080/17455030.2015.1080392
    [18] A. Javid, N. Raza, Singular and dark optical solitons to the well posed Lakshmanan-Porsezian-Daniel model, Optik, 171 (2018), 120–129. doi: 10.1016/j.ijleo.2018.06.021
    [19] J. Vega-Guzman, A. Biswas, M. F. Mahmood, Q. Zhou, S. P. Moshokoa, M. Belic, Optical solitons with polarization mode dispersion for Lakshmanan-Porsezian-Daniel model by the method of undetermined coefficients, Optik, 171 (2018), 114–119. doi: 10.1016/j.ijleo.2018.06.040
    [20] Z. Hammouch, T. Mekkaoui, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, J. MESA, 5 (2014), 489–498.
    [21] A. Biswas, Y. Yıldırım, E. Yaşar, R. T. Alqahtani, Optical solitons for Lakshmanan-Porsezian-Daniel model with dual-dispersion by trial equation method, Optik, 168 (2018), 432–439. doi: 10.1016/j.ijleo.2018.04.087
    [22] A. Biswas, M. Ekicid, A. Sonmezoglud, H. Trikie, F. B. Majida, Q. Zhou, et al., Optical solitons with Lakshmanan-Porsezian-Daniel model using a couple of integration schemes, Optik, 158 (2018), 705–711. doi: 10.1016/j.ijleo.2017.12.190
    [23] C. M. Khalique, I. E. Mhlanga, Travelling waves and conservation laws of a (2+1)-dimensional coupling system with Korteweg-de Vries equation, Appl. Math. Nonlinear Sci., 3 (2018), 241–254. doi: 10.21042/AMNS.2018.1.00018
    [24] J. Manafian, M. Lakestani, A. Bekir, Study of the analytical treatment of the (2+1)-dimensional zoomeron, the duffing and the SRLW equations via a new analytical approach, Int. J. Appl. Comput. Math., 2 (2016), 243–268. doi: 10.1007/s40819-015-0058-2
    [25] Z. Hammouch, T. Mekkaoui, P. Agarwal, Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2+1) dimensions with time-fractional conformable derivative, Eur. Phys. J. Plus, 133 (2018), 1–6. doi: 10.1140/epjp/i2018-11804-8
    [26] M. Dewasurendra, K. Vajravelu, On the method of inverse mapping for solutions of coupled systems of nonlinear differential equations arising in nanofluid flow, heat and mass transfer, Appl. Math. Nonlinear Sci., 3 (2018), 1–14. doi: 10.1504/IJANS.2018.097323
    [27] X. B. Wang, S. F. Tian, T. T. Zhang, Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation, Proc. Am. Math. Soc., 146 (2018), 3353–3365. doi: 10.1090/proc/13765
    [28] L. D. Moleleki, T. Motsepa, C. M. Khalique, Solutions and conservation laws of a generalized second extended (3+1)-dimensional Jimbo-Miwa equation, Appl. Math. Nonlinear Sci., 3 (2018), 459–474. doi: 10.2478/AMNS.2018.2.00036
    [29] A. J. M. Jawad, M. J. Abu-AlShaeer, A. Biswas, Q. Zhou, S. Moshokoa, M. Belic, Optical solitons to Lakshmanan-Porsezian-Daniel model for three nonlinear forms, Optik, 160 (2018), 197–202. doi: 10.1016/j.ijleo.2018.01.121
    [30] X. B. Wang, S. F. Tian, L. L. Feng, T. T. Zhang, On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation, J. Math. Phys., 59 (2018), 073505. doi: 10.1063/1.5046691
    [31] H. Yépez-Martínez, J. F. Gómez-Aguilar, M-derivative applied to the soliton solutions for the Lakshmanan-Porsezian-Daniel equation with dual-dispersion for optical fibers, Opt. Quant. Electron., 51 (2019), 31. doi: 10.1007/s11082-018-1740-5
    [32] X. Yang, Y. Yang, C. Cattani, C. M. Zhu, A new technique for solving the 1-D Burgers equation, Therm. Sci., 21 (2017), 129–136. doi: 10.2298/TSCI17S1129Y
    [33] J. J. Mao, S. F. Tian, L. Zou, T. T. Zhang, Stability analysis, optical solitons and complexitons of the two-dimensional complex Ginzburg-Landau equation, J. Electromagn. Waves Appl., 33 (2019), 1224–1238. doi: 10.1080/09205071.2019.1606736
    [34] K. Khan, M. A. Akbar, The $\exp(-\Phi (\xi))$-Expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation, Int. J. Dyn. Syst. Differ. Equations, 5 (2014), 72–83.
    [35] C. Cattani, T. A. Sulaiman, H. M. Baskonus, H. Bulut, Solitons in an inhomogeneous Murnaghan's rod, Eur. Phys. J. Plus, 133 (2018), 1–11. doi: 10.1140/epjp/i2018-11804-8
    [36] J. J. Mao, S. F. Tian, L. Zou, T. T. Zhang, X. J. Yan, Bilinear formalism, lump solution, lumpoff and instanton/rogue wave solution of a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation, Nonlinear Dyn., 95 (2019), 3005–3017. doi: 10.1007/s11071-018-04736-2
    [37] D. Liu, X. Ju, O. A. Ilhan, J. Manafian, H. F. Ismael, Multi-waves, breathers, periodic and cross-kink solutions to the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, J. Ocean Univ. China, 20 (2020), 35–44.
    [38] X. W. Yan, S. F. Tian, M. J. Dong, L. Zhou, T. T. Zhang, Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation, Comput. Math. Appl., 76 (2018), 179–186. doi: 10.1016/j.camwa.2018.04.013
    [39] X. W. Yan, S. F. Tian, M. J. Dong, L. Zou, Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dyn., 92 (2018), 709–720. doi: 10.1007/s11071-018-4085-5
    [40] S. F. Tian, H. Q. Zhang, On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation, J. Phys. A: Math. Theor., 45 (2012), 055203. doi: 10.1088/1751-8113/45/5/055203
    [41] X. B. Wang, S. F. Tian, C. Y. Qin, T. T. Zhang, Lie symmetry analysis, conservation laws and exact solutions of the generalized time fractional Burgers equation, Europhys. Lett., 114 (2016), 20003. doi: 10.1209/0295-5075/114/20003
    [42] S. Tian, H. Zhang, On the integrability of a generalized variable‐coefficient forced Korteweg‐de Vries equation in fluids, Stud. Appl. Math., 132 (2014), 212–246. doi: 10.1111/sapm.12026
    [43] B. H. Wang, Y. Y. Wang, C. Q. Dai, Y. X. Chen, Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, Alex. Eng. J., 59 (2020), 4699–4707. doi: 10.1016/j.aej.2020.08.027
    [44] B. H. Wang, Y. Y. Wang, C. Q. Dai, Fractional optical solitons with stochastic properties of a wick-type stochastic fractional NLSE driven by the Brownian motion, Waves Random Complex Media, (2021), 1–14. Available from: https://doi.org/10.1080/17455030.2021.1905910.
    [45] A. Nabti, B. Ghanbari, Global stability analysis of a fractional SVEIR epidemic model, Math. Methods Appl. Sci., 2021. Available from: https://doi.org/10.1002/mma.7285.
    [46] H. F. Ismael, H. M. Baskonus, H. Bulut, Abundant novel solutions of the conformable Lakshmanan-Porsezian-Daniel model, Discrete Contin. Dyn. Syst.-S, 2020. Available from: https://doi.org/10.3934/dcdss.2020398.
    [47] P. Lu, B. Wang, C. Dai, Fractional traveling wave solutions of the (2+1)‐dimensional fractional complex Ginzburg-Landau equation via two methods, Math. Methods Appl. Sci., 43 (2020), 8518–8526. doi: 10.1002/mma.6511
    [48] J. J. Fang, D. S. Mou, Y. Y. Wang, H. C. Zhang, C. Q. Dai, Y. X. Chen, Soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg-Landau equation, Results Phys., 20 (2021), 103710. doi: 10.1016/j.rinp.2020.103710
    [49] B. Ghanbari, S. Kumar, A study on fractional predator-prey-pathogen model with Mittag-Leffler kernel‐based operators, Numer. Meth. Part. D. E., 2020. Available from: https://doi.org/10.1002/num.22689.
    [50] B. Ghanbari, On the modeling of an eco-epidemiological model using a new fractional operator, Results Phys., 21 (2021), 103799. doi: 10.1016/j.rinp.2020.103799
    [51] L. J. Yu, G. Z. Wu, Y. Y. Wang, Y. X. Chen, Traveling wave solutions constructed by Mittag-Leffler function of a (2+1)-dimensional space-time fractional NLS equation, Results Phys., 17 (2020), 103156. doi: 10.1016/j.rinp.2020.103156
    [52] J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond., J. Math. Pures Appl., (1872), 55–108. Available from: http://eudml.org/doc/234248.
    [53] J. Manafian, M. F. Aghdaei, Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method, Eur. Phys. J. Plus, 131 (2016), 1–29. doi: 10.1140/epjp/i2016-16001-3
    [54] M. S. Osman, J. A. T. Machado, D. Baleanu, On nonautonomous complex wave solutions described by the coupled Schrödinger-Boussinesq equation with variable-coefficients, Opt. Quant. Electron., 50 (2018), 1–11. doi: 10.1007/s11082-017-1266-2
    [55] G. Mu, Z. Qin, Rogue waves for the coupled Schrödinger-Boussinesq equation and the coupled Higgs equation, J. Phys. Soc. Japan, 81 (2012), 084001. doi: 10.1143/JPSJ.81.084001
    [56] D. Bai, J. Wang, The time-splitting Fourier spectral method for the coupled Schrödinger-Boussinesq equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1201–1210. doi: 10.1016/j.cnsns.2011.08.012
    [57] S. S. Ray, A novel approach with time-splitting spectral technique for the coupled Schrödinger-Boussinesq equations involving Riesz fractional derivative, Commun. Theor. Phys., 68 (2017), 301. doi: 10.1088/0253-6102/68/3/301
    [58] C. Banquet, L. C. F. Ferreira, E. J. Villamizar-Roa, On the Schrödinger-Boussinesq system with singular initial data, J. Math. Anal. Appl., 400 (2013), 487–496. doi: 10.1016/j.jmaa.2012.10.047
    [59] Z. F. Liang, Modulational instability and stationary waves for the coupled generalized Schrödinger-Boussinesq system, Z. Naturforsch. A, 66 (2011), 143–150.
    [60] A. Kılıcman, R. Abazari, Travelling wave solutions of the Schrödinger-Boussinesq system, In: Abstract and Applied Analysis, Hindawi, 2012.
    [61] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. doi: 10.2298/TSCI160111018A
    [62] J. Manafian, M. F. Aghdaei, Abundant soliton solutions for the coupled Schrödinger-Boussinesq system via an analytical method, Eur. Phys. J. Plus, 131 (2016), 1–29. doi: 10.1140/epjp/i2016-16001-3
    [63] X. Wen, Construction of new exact rational form non-travelling wave solutions to the (2+1)-dimensional generalized Broer-Kaup system, Appl. Math. Comput., 217 (2010), 1367–1375.
    [64] D. Guo, S. F. Tian, T. T. Zhang, J. Li, Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrödinger system, Nonlinear Dyn., 94 (2018), 2749–2761. doi: 10.1007/s11071-018-4522-5
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2392) PDF downloads(167) Cited by(45)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog