The aim of the present paper is to study pseudoparallel invariant submanifolds of a $ K $-paracontact metric manifold. We consider pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci generalized pseudo parallel invariant submanifolds of a $ K $-paracontact manifold and we obtain new results. We think contributes to providing some new and interesting results in the area of geometric structures on manifolds geometry.
Citation: Mehmet Atçeken, Tuğba Mert. Characterizations for totally geodesic submanifolds of a $ K $-paracontact manifold[J]. AIMS Mathematics, 2021, 6(7): 7320-7332. doi: 10.3934/math.2021430
The aim of the present paper is to study pseudoparallel invariant submanifolds of a $ K $-paracontact metric manifold. We consider pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci generalized pseudo parallel invariant submanifolds of a $ K $-paracontact manifold and we obtain new results. We think contributes to providing some new and interesting results in the area of geometric structures on manifolds geometry.
[1] | S. K. Hui, V. N. Mishra, T. Pal, Vandana, Some Classes of Invariant Submanifolds of $(LCS)_{n}$-Manifolds, Ital. J. Pure Appl. Math., 39 (2018), 359–372. |
[2] | V. Venkatesha, S. Basavarajappa, Invariant Submanifolds of LP-Sasakian Manifolds, Khayyam J. Math., 6 (2020), 16–26. |
[3] | S. Sular, C. Özgür, C. Murathan, Pseudoparallel Anti-Invaraint Submanifolds of Kenmotsu Manifolds, Hacettepe J. Math. Stat., 39 (2010), 535–543. |
[4] | B. C. Montano, L. D. Terlizzi, M. M. Tripathi, Invariant Submanifolds of Contact $(\kappa, \mu)$-Manifolds, Glasgow Math. J., 50 (2008), 499–507. doi: 10.1017/S0017089508004369 |
[5] | M. S. Siddesha, C. S. Bagewadi, Invariant Submanifolds of $(\kappa, \mu)$-Contact Manifolds Admitting Quarter Symmetric Metric Connection, Int. J. Math. Trends Technol., 34 (2016), 48–53. doi: 10.14445/22315373/IJMTT-V34P511 |
[6] | S. Kaneyuki, F. L. Williams, Almost paracontact and parahodge Structures on Manifolds, Nagoya Math. J., 90 (1985), 173–187. |
[7] | S. Zamkovoy, Canonical Connections on Paracontact Manifolds, Ann. Globanal Geom., 36 (2009), 37–60. doi: 10.1007/s10455-008-9147-3 |
[8] | B. C. Montano, I. K. Erken, C. Murathan, Nullity Conditions in Paracontact Geometry, Differ. Geom. Appl., 30 (2010), 79–100. |
[9] | D. G. Prakasha, K. Mirji, On $(\kappa, \mu)$-Paracontact Metric Manifolds, Gen. Math. Notes., 25 (2014), 68–77. |
[10] | M. Atçeken, Ü. Yildirim, S. Dirik, Semiparallel Submanifolds of a Normal Paracontact Metric Manifold, Hacet. J. Math. Stat., 48 (2019), 501–509. |
[11] | D. E. Blair, T. Koufogiorgos, B. J. Papatoniou, Contact Metric Manifolds Satisfying a Nullity Condition, Israel J. Math., 91 (1995), 189–214. doi: 10.1007/BF02761646 |
[12] | Venkatesha, D. M. Naik, Cetain Results on K-Paracontact and ParaSasakian Manifolds, J. Geom., 108 (2017), 939–952. doi: 10.1007/s00022-017-0387-x |
[13] | A. A. Shaikh, Y. Matsuyama, S. K. Hui, On invariant submanifolds of (LCS)n-manifolds, J. Egypt. Math. Soc., 24 (2016), 263–269. doi: 10.1016/j.joems.2015.05.008 |
[14] | S. K. Hui, S. Uddin, A. H. Alkhaldi, P. Mandal, Invariant submanifolds of generalized Sasakian-space-forms, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1–21. |
[15] | S. K. Hui, J. Roy, Invariant and anti-invariant submanifolds of special quasi-Sasakian manifolds, J. Geom., 109 (2018), 37. doi: 10.1007/s00022-018-0442-2 |
[16] | S. K. Hui, L. I. Piscoran, T. Pal, Invariant submanifolds of (LCS)n-manifolds with respect to quarter symmetric metric connection, Acta Math. Univ. Comenianae, 87 (2018), 205–221. |
[17] | S. Büyükkütük, I. Kişi, V. N. Mishra, G. Oztürk, Some Characterizations of Curves in Galilean 3-Space $\mathbb{G}_{3}$, Facta Univ., Ser.: Math. Inf., 31 (2016), 503–512. |
[18] | L. I. Pişcoran, V. N. Mishra, Projectively flatness of a new class of $\left(\alpha, \beta\right) $-metrics, Georgian Math. J., 26 (2019), 133–139. doi: 10.1515/gmj-2017-0034 |
[19] | V. Deepmala, K. Drachal, V. N. Mishra, Some algebro-geometric aspects of spacetime c-boundary, Math. Aeterna, 6 (2016), 561–572. |
[20] | K. Drachal, K. Vandana, Some algebraic aspects of the gluing of differential spaces, Georgian Math. J., 27 (2020), 355–360. doi: 10.1515/gmj-2018-0039 |
[21] | L. I. Pişcoran, V. N. Mishra, $S-$curvature for a new class of $(\alpha, \beta)$-metrics, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 111 (2017), 1187–1200. doi: 10.1007/s13398-016-0358-3 |
[22] | L. I. Pişcoran, V. N. Mishra, The variational problem in Lagrange spaces endowed with a special type of $\left(\alpha, \beta\right) $-metrics, Filomat, 32 (2018), 643–652. doi: 10.2298/FIL1802643P |
[23] | S. K. Hui, V. N. Mishra, A. Patra, Examples of Gradient Ricci Solitons on 4-Dimensional Riemannian Manifold, Modell. Appl. Theory, 1 (2016), 23–27. |