Research article Special Issues

Optimal error estimates of a class of system of two quasi-variational inequalities

  • Received: 25 December 2020 Accepted: 23 February 2021 Published: 31 March 2021
  • MSC : 65K15, 65N30, 65N15

  • In the present paper, the finite element approximation of a class of system of two quasi-variational inequalities with terms sources and obstacles depending on solution is analyzed. An optimal L-error estimate is derived, combining a modified algorithm of Bensoussan-Lions type and standard uniform error estimates known for elliptic variational inequalities (VIs).

    Citation: Abida Harbi, Nasreddine Nemis, Mohamed Haiour. Optimal error estimates of a class of system of two quasi-variational inequalities[J]. AIMS Mathematics, 2021, 6(6): 5977-6001. doi: 10.3934/math.2021353

    Related Papers:

  • In the present paper, the finite element approximation of a class of system of two quasi-variational inequalities with terms sources and obstacles depending on solution is analyzed. An optimal L-error estimate is derived, combining a modified algorithm of Bensoussan-Lions type and standard uniform error estimates known for elliptic variational inequalities (VIs).



    加载中


    [1] A. Bensoussan, J. L. Lions, Impulse Control and Quasivariational Inequalities, Montrouge: Gauthier-Villars, 1984.
    [2] D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications Pure and Applied Mathematics, New York: Academic Press, 1980.
    [3] M. Boulbrachene, H. Mohamed, B. Chentouf, On a noncoercive system of quasi-variational inequalities related to stochatic control problems, J. Inequalities Pure Appl. Math., 3 (2002), 14.
    [4] M. Boulbrachene, Pointwise error estimate for a noncoercive system of quasi-variational inequalities related to the management of energy production, J. Inequalities Pure Appl. Math., 3 (2002), 318.
    [5] M. Boulbrachene, L-error estimate for a system of elliptic quasi-variational inequalities with noncoercive operators, Comput. Math. Appl., 45 (2003), 983-989. doi: 10.1016/S0898-1221(03)00072-5
    [6] M. Boulbrachene, M. Haiour, S. Saadi, L-error estimate for a system of elliptic quasi-variational inequalities, Int. J. Math. Math. Sci., 2003 (2003), 579135.
    [7] M. Boulbrachene, L-error estimate for a noncoercive system of elliptic quasi-variational inequalities: A simple proof, Appl. Math. E-Notes, 5 (2005), 97-102.
    [8] M. Boulbrachene, S. Saadi, L-error analysis for a system of quasivariational inequalities with noncoercive operators, J. Inequalities Appl., 5 (2006), 15704.
    [9] S. Boulaares, M. Haiour, The finite element approximation of evolutionary Hamilton-Jacobi-Bellman equations with nonlinear source terms, Indagationes Math., 24 (2013), 161-173. doi: 10.1016/j.indag.2012.07.005
    [10] S. Boulaares, M. Haiour, The theta time scheme combined with a finite element spatial approximation in the evolutionary Hamilton-Jacobi-Bellman equation with linear source terms, Comput. Math. Model., 25 (2014), 423-438. doi: 10.1007/s10598-014-9237-y
    [11] S. Boulaares, M. Haiour, A new proof for the existence and uniqueness of the discrete evolutionary HJB equation, Appl. Math. Comput., 262 (2015), 42-55. doi: 10.1016/j.amc.2015.03.095
    [12] P. Cortey-Dumont, On finite element approximation in the L-norm of variational inequalities, Numerische Math., 47 (1985), 45-57. doi: 10.1007/BF01389875
    [13] A. Harbi, Maximum norm analysis of a nonmatching grids method for a class of variational inequalities with nonlinear source terms, J. Inequalities Appl., 2016 (2016), 181. doi: 10.1186/s13660-016-1110-4
    [14] P. Cortey-Dumont, Sur les inéquations variationnelles opérateurs non coercifs, ESAIM Math. Modell. Numer. Anal., 19 (1985), 195-212. doi: 10.1051/m2an/1985190201951
    [15] J. Karátson, S. Korotov, Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions, Numerische Math., 99 (2005), 669-698. doi: 10.1007/s00211-004-0559-0
    [16] P. G. Ciarlet, P. A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng., 2 (1973), 17-31. doi: 10.1016/0045-7825(73)90019-4
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2280) PDF downloads(111) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog