This paper concerns the input-to-state stability problem of delayed reaction-diffusion neural networks with multiple impulses. After reformulating the neural-network model in term of an abstract impulsive functional differential equation, the criteria of input-to-state stability are established by the direct estimate of mild solution and an integral inequality with infinite distributed delay. It shows that the input-to-state stability of the continuous dynamics can be retained under certain multiple impulsive disturbance and the unstable continuous dynamics can be stabilised by the multiple impulsive control, if the intervals between the multiple impulses are bounded. The numerical simulation of two examples is given to show the effectiveness of theoretical results.
Citation: Tengda Wei, Xiang Xie, Xiaodi Li. Input-to-state stability of delayed reaction-diffusion neural networks with multiple impulses[J]. AIMS Mathematics, 2021, 6(6): 5786-5800. doi: 10.3934/math.2021342
This paper concerns the input-to-state stability problem of delayed reaction-diffusion neural networks with multiple impulses. After reformulating the neural-network model in term of an abstract impulsive functional differential equation, the criteria of input-to-state stability are established by the direct estimate of mild solution and an integral inequality with infinite distributed delay. It shows that the input-to-state stability of the continuous dynamics can be retained under certain multiple impulsive disturbance and the unstable continuous dynamics can be stabilised by the multiple impulsive control, if the intervals between the multiple impulses are bounded. The numerical simulation of two examples is given to show the effectiveness of theoretical results.
[1] | Y. LeCun, Y. Bengio, G. E. Hinton, Deep learning, Nature, 521 (2015), 436–444. doi: 10.1038/nature14539 |
[2] | P. Zeng, H. Li, H. He, S. Li, Dynamic energy management of a microgrid using approximate dynamic programming and deep recurrent neural network learning, IEEE T. Smart Grid, 10 (2018), 4435–4445. |
[3] | W. H. Chen, S. Luo, W. X. Zheng, Impulsive synchronization of reaction-diffusion neural networks with mixed delays and its application to image encryption, IEEE T. Neur. Net. Lear., 27 (2016), 2696–2710. doi: 10.1109/TNNLS.2015.2512849 |
[4] | H. Ma, H. Li, R. Lu, T. Huang, Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances, Sci. China Inform. Sci., 63 (2020), 1–15. doi: 10.1007/s11431-019-9532-5 |
[5] | W. Xiao, L. Cao, H. Li, R. Lu, Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay, Sci. China Inform. Sci., 63 (2020), 1–17. doi: 10.1007/s11431-019-9532-5 |
[6] | Z. Wu, H. R. Karimi, P. Shi, Dissipativity-based small-gain theorems for stochastic network systems, IEEE T. Automat. Contr., 61 (2015), 2065–2078. |
[7] | E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE T. Automat. Contr., 34 (1989), 435–443. doi: 10.1109/9.28018 |
[8] | J. P. Hespanha, D. Liberzon, A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735–2744. doi: 10.1016/j.automatica.2008.03.021 |
[9] | S. Dashkovskiy, A. Mironchenko, Input-to-state stablility of nonlinear impulsive systems, SIAM J. Control Optim., 51 (2013), 1962–1987. doi: 10.1137/120881993 |
[10] | C. Cai, A. R. Teel, Robust input-to-state stability for hybrid systems, SIAM J. Control Optim., 51 (2013), 1651–1678. doi: 10.1137/110824747 |
[11] | W. H. Chen, W. Z. Zheng, Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays, Automatica, 45 (2009), 1481–1488. doi: 10.1016/j.automatica.2009.02.005 |
[12] | S. Dashkovskiy, M. Kosmykov, A. Mironchenko, L. Naujok, Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods, Nonlinear Anal. Hybri., 6 (2012), 899–915. doi: 10.1016/j.nahs.2012.02.001 |
[13] | X. Wu, Y. Tang, W. Zhang, Input-to-state stability of impulsive stochastic delayed systems under linear assumptions, Automatica, 66 (2016), 195–204 doi: 10.1016/j.automatica.2016.01.002 |
[14] | X. Wu, Y. Tang, J. Cao, Input-to-state stability of time-varying switched systems with time-delays, IEEE T. Automat. Contr., 64 (2019), 2537–2544. doi: 10.1109/TAC.2018.2867158 |
[15] | R. Rao, X. Li, Input-to-state stability in the meaning of switching for delayed feedback switched stochastic finanical system, AIMS Mathematics, 6 (2020), 1040–1064. |
[16] | C. K. Ahn, Passive learning and input-to-state stability of switched Hopfield neural networks with time-delay, Inform. Sciences, 180 (2010), 4582–4594. doi: 10.1016/j.ins.2010.08.014 |
[17] | R. Wei, J. Cao, J. Kurths, Novel fixed-time stabilization of quaternion-valued BAMNNs with disturbances and time-varying coefficients, AIMS Mathematics, 5 (2020), 3089–3110. doi: 10.3934/math.2020199 |
[18] | Z. Yang, W. Zhou, T. Huang, Exponential input-to-state stability of recurrent neural networks with multiple time-varying delays, Cogn. Neurodynamics, 8 (2014), 47–54. doi: 10.1007/s11571-013-9258-9 |
[19] | Q. Zhu, J. Cao, R. Rakkiyappan, Exponential input-to-state stability of stochastic Cohen-Grossberg neural networks with mixed delays, Nonlinear Dynam., 79 (2015), 1085–1098. doi: 10.1007/s11071-014-1725-2 |
[20] | L. Liu, J. Cao, C. Qian, $P$th moment exponential input-to-state stability of delayed recurrent neural networks with Markovian switching via vector Lyapunov function, IEEE T. Neur. Net. Lear., 29 (2017), 3152–3163. |
[21] | X. Li, T. Caraballo, R. Rakkiyappan, X. Han, On the stability of impulsive functional differential equations with infinite delay, Math. Method. Appl. Sci., 38 (2015), 3130–3140. doi: 10.1002/mma.3303 |
[22] | A. Chaillet, G. Detorakis, S. Palfi, S. Senova, Robust stabilization of delayed neural fields with partial measurement and actuation, Automatica, 83 (2017), 262–274. doi: 10.1016/j.automatica.2017.05.011 |
[23] | J. G. Lu, Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions, Chaos Soliton. Fract., 35 (2008), 116–125. doi: 10.1016/j.chaos.2007.05.002 |
[24] | J. Cao, G. Stamov, I. Stamova, S. Simeonov, Almost periodicity in impulsive fractional-order reaction-diffusion neural networks with time-varying delays, IEEE Trans. Cybern., 51 (2021), 151–161. doi: 10.1109/TCYB.2020.2967625 |
[25] | Y. Sheng, H. Zhang, Z. Zeng, Stability and robust stability of stochastic reaction-diffusion neural networks with infinite discrete and distributed delays, IEEE T. Syst. Man Cy. S., 50 (2018), 1721–1732. |
[26] | J. Zhou, S. Xu, B. Zhang, Y. Zou, H. Shen, Robust exponential stability of uncertain stochastic neural networks with distributed delays and reaction-diffusions, IEEE T. Neur. Net. Lear., 23 (2012), 1407–1416. doi: 10.1109/TNNLS.2012.2203360 |
[27] | Z. Yang, W. Zhou, T. Huang, Input-to-state stability of delayed reaction-diffusion neural networks with impulsive effects, Neurocomputing, 333 (2019), 261–272. doi: 10.1016/j.neucom.2018.12.019 |
[28] | J. Li, W. Zhou, Z. Yang, State estimation and input-to-state stability of impulsive stochastic BAM neural networks with mixed delays, Neurocomputing, 227 (2017), 37–45. doi: 10.1016/j.neucom.2016.08.101 |
[29] | K. N. Wu, M. Z. Ren, X. Z. Liu, Exponential input-to-state stability of stochastic delay reaction-diffusion neural networks, Neurocomputing, 412 (2020), 399–405. doi: 10.1016/j.neucom.2019.09.118 |
[30] | T. Wei, X. Li, V. Stojanovic, Input-to-state stability of impulsive reaction-diffusion neural networks with infinite distributed delays, Nonlinear Dynam., 103 (2021), 1733–1755. doi: 10.1007/s11071-021-06208-6 |
[31] | A. Mironchenko, C. Prieur, Input-to-state stability of infinite-dimensional systems: Recent results and open questions, SIAM Rev., 62 (2020), 529–614. doi: 10.1137/19M1291248 |
[32] | I. Karafyllis, M. Krstic, Input-to-state stability for PDEs, Springer International Publishing, 2019. |
[33] | W. He, F. Qian, J. Cao, Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control, Neural Networks, 85 (2017), 1–9. doi: 10.1016/j.neunet.2016.09.002 |
[34] | H. Zhang, T. Ma, G. Huang, Z. Wang, Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control, IEEE T. Syst. Man Cy. B, 40 (2009), 831–844. |
[35] | J. Hu, G. Sui, X. Lv, X. Li, Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Anal. Model., 23 (2018), 904–920. doi: 10.15388/NA.2018.6.6 |
[36] | X. Li, D. O'Regan, H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80 (2015), 85–99. doi: 10.1093/imamat/hxt027 |
[37] | X. Li, J. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14–22. doi: 10.1016/j.amc.2018.01.036 |
[38] | S. Dashkovskiy, P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Anal. Hybri., 26 (2017), 190–200. doi: 10.1016/j.nahs.2017.06.004 |
[39] | P. Li, X. Li, J. Lu, Input-to-state stability of impulsive delay systems with multiple impulses, IEEE T. Automat. Contr, 66 (2020), 362–368. |
[40] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. |
[41] | D. Xu, B. Li, S. Long, L. Teng, Moment estimate and existence for solutions of stochastic functional differential equations, Nonlinear Anal. Theor., 108 (2014), 128–143. doi: 10.1016/j.na.2014.05.004 |
[42] | L. Gawarecki, V. Mandrekar, Stochastic differential equations in infinite dimensions: with applications to stochastic partial differential equations, Springer Science & Business Media, 2010. |
[43] | D. Li, G. Chen, Impulses-induced $p$-exponential input-to-state stability for a class of stochastic delayed partial differential equations, Int. J. Control, 92 (2019), 1827–1835. doi: 10.1080/00207179.2017.1414309 |