Research article

Bifurcation analysis of a special delayed predator-prey model with herd behavior and prey harvesting

  • Received: 05 February 2021 Accepted: 18 March 2021 Published: 26 March 2021
  • MSC : 92D25, 34D23, 34H05

  • In this paper, we propose a predator-prey system with square root functional response, two delays and prey harvesting, in which an algebraic equation stands for the economic interest of the yield of the harvest effort. Firstly, the existence of the positive equilibrium is discussed. Then, by taking two delays as bifurcation parameters, the local stability of the positive equilibrium and the existence of Hopf bifurcation are obtained. Next, some explicit formulas determining the properties of Hopf bifurcation are analyzed based on the normal form method and center manifold theory. Furthermore, the control of Hopf bifurcation is discussed in theory. What's more, the optimal tax policy of system is given. Finally, simulations are given to check the theoretical results.

    Citation: Xin-You Meng, Fan-Li Meng. Bifurcation analysis of a special delayed predator-prey model with herd behavior and prey harvesting[J]. AIMS Mathematics, 2021, 6(6): 5695-5719. doi: 10.3934/math.2021336

    Related Papers:

  • In this paper, we propose a predator-prey system with square root functional response, two delays and prey harvesting, in which an algebraic equation stands for the economic interest of the yield of the harvest effort. Firstly, the existence of the positive equilibrium is discussed. Then, by taking two delays as bifurcation parameters, the local stability of the positive equilibrium and the existence of Hopf bifurcation are obtained. Next, some explicit formulas determining the properties of Hopf bifurcation are analyzed based on the normal form method and center manifold theory. Furthermore, the control of Hopf bifurcation is discussed in theory. What's more, the optimal tax policy of system is given. Finally, simulations are given to check the theoretical results.



    加载中


    [1] C. S. Holling, The functional response of invertebrate predators to prey density, Mem. Entomol. Soc. Can., 98 (1966), 5–86.
    [2] R. M. May, Stability and Complexity in Model Ecosystemsm, New Jersey: Princeton University Press, 1973.
    [3] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, New York: Dekker, 1980.
    [4] P. H. Leslie, J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrika, 47 (1960), 219–234. doi: 10.1093/biomet/47.3-4.219
    [5] P. H. Crowley, E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthol. Soc., 8 (1989), 211–221. doi: 10.2307/1467324
    [6] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. doi: 10.2307/3866
    [7] D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881–892. doi: 10.2307/1936298
    [8] V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal.: Real World Appl., 12 (2011), 2319–2338. doi: 10.1016/j.nonrwa.2011.02.002
    [9] P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal.: Real World Appl., 13 (2012), 1837–1843. doi: 10.1016/j.nonrwa.2011.12.014
    [10] S. L. Yuan, C. Q. Xu, T. H. Zhang, Spatial dynamics in a predator-prey model with herd behavior, Chaos, 23 (2013), 033102. doi: 10.1063/1.4812724
    [11] C. Q. Xu, S. L. Yuan, Stability and Hopf bifurcation in a delayed predator-prey system with herd behavior, Abstr. Appl. Anal., 2014 (2014), 568943.
    [12] E. Venturino, S. Petrovskii, Spatiotemporal behavior of a prey-predator system with a group defense for prey, Ecol. Complexity, 14 (2013), 37–47. doi: 10.1016/j.ecocom.2013.01.004
    [13] C. Q. Xu, S. L. Yuan, T. H. Zhang, Global dynamics of a predator-prey model with defense mechanism for prey, Appl. Math. Lett., 62 (2016), 42–48. doi: 10.1016/j.aml.2016.06.013
    [14] B. W. Kooi, E. Venturino, Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey, Math. Biosci., 274 (2016), 58–72. doi: 10.1016/j.mbs.2016.02.003
    [15] M. Banerjee, B. W. Kooi, E. Venturino, An ecoepidemic model with prey herd behavior and predator feeding saturation response on both healthy and diseased prey, Math. Model. Nat. Phenom., 12 (2017), 133–161. doi: 10.1051/mmnp/201712208
    [16] X. S. Tang, Y. L. Song, Bifurcation analysis and Turing instability in a diffusive predator-prey model with herd behavior and hyperbolic mortality, Chaos Solitons Fractals, 81 (2015), 303–314. doi: 10.1016/j.chaos.2015.10.001
    [17] X. S. Tang, Y. L. Song, T. H. Zhang, Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion, Nonlinear Dyn., 86 (2016), 73–89. doi: 10.1007/s11071-016-2873-3
    [18] Q. Liu, D. Q. Jiang, T. Hayat, A. Alsaedi, Stationary distribution and extinction of a stochastic predator-prey model with herd behavior, J. Franklin Inst., 355 (2018), 8177–8193. doi: 10.1016/j.jfranklin.2018.09.013
    [19] X. Y. Meng, J. G. Wang, Dynamical analysis of a delayed diffusive predator-prey model with schooling behavior and Allee effect, J. Biol. Dyn., 14 (2020), 826–848. doi: 10.1080/17513758.2020.1850892
    [20] W. B. Yang, Analysis on existence of bifurcation solutions for a predator-prey model with herd behavior, Appl. Math. Model., 53 (2018), 433–446. doi: 10.1016/j.apm.2017.09.020
    [21] W. B. Yang, Effect of cross-diffusion on the stationary problem of a predator-prey system with a protection zone, Comput. Math. Appl., 76 (2018), 2262–2271. doi: 10.1016/j.camwa.2018.08.025
    [22] F. Souna, A. Lakmeche, S. Djilali, Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting, Chaos Solitons Fractals, 140 (2020), 110180. doi: 10.1016/j.chaos.2020.110180
    [23] S. Bentout, S. Djilali, S. Kumar, Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model, Phys. A, 572 (2021), 125840. doi: 10.1016/j.physa.2021.125840
    [24] S. G. Ruan, J. J. Wei, On the zeros of transcendental functionas with applications to stability of delay differential equations with two delays, Dyn. Contin. Discrete Impulsive Sys., 10 (2003), 863–874.
    [25] J. K. Hale, Theory of Functional Differential Equations, New York: Springer-Verlag, 1977.
    [26] Y. Kuang, Delay Differerntial Equations with Application in Population Dynamics, New York: Academic Press, 1993.
    [27] E. Beretta, Y. Kuang, Global analyses in some delayed ratio-dependent predator-prey systems, Nonlinear Anal.: Theory Methods Appl., 32 (1998), 381–408. doi: 10.1016/S0362-546X(97)00491-4
    [28] X. Y. Meng, J. Li, Dynamical behavior of a delayed prey-predator-scavenger system with fear effect and linear harvesting, Int. J. Biomath., 2021. Available from: https://doi.org/10.1142/S1793524521500248.
    [29] X. Y. Meng, N. N. Qin, H. F. Huo, Dynamics of a food chain model with two infected predators, Int. J. Bifurcation Chaos, 31 (2021), 2150019. doi: 10.1142/S021812742150019X
    [30] S. Djilali, B. Ghanbari, The influence of an infectious disease on a prey-predator model equipped with a fractional-order derivative, Adv. Differ. Equations, 2021 (2021), 20. Available from: https://doi.org/10.1186/s13662-020-03177-9.
    [31] H. S. Gordon, The economic theory of a common property resource: The fishery, J. Political Econ., 62 (1954), 124–142. doi: 10.1086/257497
    [32] D. G. Luenberger, A. Arbel, Singular dynamic Leontief systems, Econometrics, 45 (1997), 991–995.
    [33] Y. Zhang, Q. L. Zhang, Chaotic control based on descriptor bioeconomic systems, Control Decis., 22 (2007), 445–447+452.
    [34] X. Y. Meng, Y. Q. Wu, Bifurcation and control in a singular phytoplankton-zooplankton-fish model with nonlinear fish harvesting and taxation, Int. J. Bifurcation Chaos, 28 (2018), 1850042. doi: 10.1142/S0218127418500426
    [35] K. Chakraborty, M. Chakraborty, T. K. Kar, Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay, Nonlinear Anal.: Hybrid Syst., 5 (2011), 613–625. doi: 10.1016/j.nahs.2011.05.004
    [36] Q. L. Zhang, C. Liu, X. Zhang, Complexity, Analysis and Control of Singular Biological Systems, London: Springer Press, 2012.
    [37] G. D. Zhang, Y. Shen, B. S. Chen, Hopf bifurcation of a predator-prey system with predator harvesting and two delays, Nonlinear Dyn., 73 (2013), 2119–2131. doi: 10.1007/s11071-013-0928-2
    [38] C. Liu, W. L. Ping, Q. L. Zhang, Y. Yan, Dynamical analysis in a bioeconomic phytoplankton zooplankton system with double time delays and environmental stochasticity, Phys. A, 482 (2017), 682–698. doi: 10.1016/j.physa.2017.04.104
    [39] B. Babaei, , M. Shafiee, Analysis and behavior control of a modified singular prey-predator model, Eur. J. Control, 49 (2019), 107–115. doi: 10.1016/j.ejcon.2019.01.001
    [40] W. M. Boothby, An Introduction to Differential Manifolds and Riemannian Geometry, New York: Academic Press, 1986.
    [41] B. S. Chen, X. X. Liao, Y. Q. Liu, Normal forms and bifurcations for the differential-algebraic systems, Acta Math. Appl. Sin., 23 (2000), 429–433.
    [42] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and Applications of Hopf Bifurcation, London: Cambridge University Press, 1981.
    [43] R. P. Gupta, M. Banerjee, P. Chandra, Period doubling cascades of prey-predator model with nonlinear harvesting and control of over exploitation through taxation, Commu. Nonlinear Sci. Numer. Simul., 19 (2014), 2382–2405. doi: 10.1016/j.cnsns.2013.10.033
    [44] M. Li, B. S. Chen, H. W. Ye, A bioeconomic differential algebraic predator-prey model with nonlinear prey harvesting, Appl. Math. Model., 42 (2017), 17–28. doi: 10.1016/j.apm.2016.09.029
    [45] P. D. N. Srinivasu, Bioeconomics of a renewable resource in presence of a predator, Nonlinear Anal.: Real. World Appl., 2 (2001), 497–506. doi: 10.1016/S1468-1218(01)00006-2
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2388) PDF downloads(199) Cited by(8)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog