Research article

Uniqueness and exponential instability in a new two-temperature thermoelastic theory

  • Received: 28 January 2021 Accepted: 11 March 2021 Published: 15 March 2021
  • MSC : 35Q74, 74H10, 74H25, 80A19, 74F05

  • In this work we consider the temperature-rate dependent two temperatures thermoelastic theory. It has been proposed very recently. We study the case in which the elasticity tensor may not be positive definite. Thus, the problem can be ill posed in the sense of Hadamard. We adapt the logarithmic convexity argument to the specific situation proposed by this theory. That is, we define a suitable function on the solutions satisfying that the logarithm is convex. Uniqueness and instability of the solutions under suitable conditions on the constitutive tensors are proved.

    Citation: José R. Fernández, Ramón Quintanilla. Uniqueness and exponential instability in a new two-temperature thermoelastic theory[J]. AIMS Mathematics, 2021, 6(6): 5440-5451. doi: 10.3934/math.2021321

    Related Papers:

  • In this work we consider the temperature-rate dependent two temperatures thermoelastic theory. It has been proposed very recently. We study the case in which the elasticity tensor may not be positive definite. Thus, the problem can be ill posed in the sense of Hadamard. We adapt the logarithmic convexity argument to the specific situation proposed by this theory. That is, we define a suitable function on the solutions satisfying that the logarithm is convex. Uniqueness and instability of the solutions under suitable conditions on the constitutive tensors are proved.



    加载中


    [1] D. S. Chandrasekharaiah, Hyperbolic thermoelasticity: A review of recent literature, Appl. Mech. Rev., 51 (1998), 705–729. doi: 10.1115/1.3098984
    [2] R. B. Hetnarski, J. Ignaczak, Generalized thermoelasticity, J. Thermal Stresses, 22 (1999), 451–470.
    [3] R. B. Hetnarski, J. Ignaczak, Nonclassical dynamical thermoelasticity, Internat. J. Solids Structures, 37 (2000), 215–224. doi: 10.1016/S0020-7683(99)00089-X
    [4] J. Ignaczak, M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds, Oxford Mathematical Monographs, Oxford, 2010.
    [5] B. Straughan, Heat Waves, vol. 177, Springer-Verlag, Berlin, 2011.
    [6] L. Wang, X. Zhou, X. Wei, Heat Conduction, Mathematical Models and Analytical Solutions, Springer-Verlag, Berlin Heidelberg, 2008.
    [7] H. Lord, Y. Shulman, A Generalized Dynamical Theory of Thermoelasticity, Z. Angew. Math. Phys., 15 (1967), 299–309.
    [8] A. E. Green, K. A. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1–7.
    [9] D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, J. Heat Transfer, 117 (1995), 8–16. doi: 10.1115/1.2822329
    [10] A. E. Green, P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264. doi: 10.1080/01495739208946136
    [11] A. E. Green, P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208. doi: 10.1007/BF00044969
    [12] A. E. Green, P. M. Naghdi, A verified procedure for construction of theories of deformable media. I. Classical continuum physics, II. Generalized continua, III. Mixtures of interacting continua, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 448 (1995), 335–388.
    [13] R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020–4031. doi: 10.1177/1081286519862007
    [14] R. Quintanilla, Moore-Gibson-Thompson thermoelasticity with two temperatures, Appl. Engng. Sci., 1 (2020), 100006.
    [15] P. J. Chen, M. E. Gurtin, On a theory of heat involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614–627. doi: 10.1007/BF01594969
    [16] P. J. Chen, M. E. Gurtin, W. O. Williams, A note on non-simple heat conduction, Z. Angew. Math. Phys., 19 (1968), 969–970. doi: 10.1007/BF01602278
    [17] P. J. Chen, M. E. Gurtin, W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, Z. Angew. Math. Phys., 20 (1969), 107–112. doi: 10.1007/BF01591120
    [18] H. M. Youssef, Theory of two-temperature-generalized thermoelasticity, IMA J. Appl. Math., 71 (2006), 383–390. doi: 10.1093/imamat/hxh101
    [19] R. Quintanilla, A Well Posed Problem for the Dual-Phase-Lag Heat Conduction, J. Thermal Stresses, 31 (2008), 260–269. doi: 10.1080/01495730701738272
    [20] R. Quintanilla, A Well-Posed Problem for the Three-Dual-Phase-Lag Heat Conduction, J. Thermal Stresses, 32 (2009), 1270–1278. doi: 10.1080/01495730903310599
    [21] M. Campo, M. I. M. Copetti, J. R. Fernández, R. Quintanilla, On existence and numerical approximation in phase–lag thermoelasticity with two temperatures, Submitted (2020).
    [22] A. Magaña, A. Miranville, R. Quintanilla, On the stability in phase-lag heat conduction with two temperatures, J. Evol. Equ., 18 (2018), 1697–1712. doi: 10.1007/s00028-018-0457-z
    [23] A. Magaña, A. Miranville, R. Quintanilla, On the time decay in phase-lag thermoelasticity with two temperatures, Electron. Res. Arch., 27 (2019), 7–19. doi: 10.3934/era.2019007
    [24] A. Magaña, R. Quintanilla, Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories, Math. Mech. Solids, 14 (2009), 622–634. doi: 10.1177/1081286507087653
    [25] S. Mukhopadhyay, R. Kumar, Thermoelastic Interactions on Two-Temperature Generalized Thermoelasticity in an Infinite medium with a cylindrical cavity, J. Thermal Stresses, 32 (2009), 341–360. doi: 10.1080/01495730802637183
    [26] S. Mukhopadhyay, R. Prasad, R. Kumar, On the theory of two-temperature thermoelasticity with two phase-lags, J. Thermal Stresses, 34 (2011), 352–365. doi: 10.1080/01495739.2010.550815
    [27] O. N. Shivay, S. Mukhopadhyay, On the Temperature-Rate Dependent Two-Temperature Thermoelasticity Theory, J. Heat Transfer, 142 (2020), 022102. doi: 10.1115/1.4045241
    [28] A. E. Green, Thermoelastic stresses in initially stressed bodies, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 266 (1962), 1–19.
    [29] D. Ieşan, Incremental equations in thermoeasticity, J. Thermal Stresses, 3 (1980), 41–56. doi: 10.1080/01495738008926951
    [30] D. Ieşan, A. Scalia, Thermoelastic Deformations, Kluwer Academic Publishers, Dordrecht, 1996.
    [31] R. J. Knops, E. W. Wilkes, Theory of elastic stability, Flugge handbuch der Physik (ed. C. Truesdell), vol. VI a/3, Springer-Verlag, 1973.
    [32] M. Pellicer R. Quintanilla, On uniqueness and instability for some thermomechanical problems involving the Moore Gibson Thompson equation, Z. Angew. Math. Phys., 71 (2020), 84–21. doi: 10.1007/s00033-020-01307-7
    [33] R. Quintanilla, Exponential stability and uniqueness in thermoelasticity with two temperatures, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11 (2004), 57–68.
    [34] R. Quintanilla, B. Straughan, Growth and uniqueness in thermoelasticity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 456 (2000), 1419–1429. doi: 10.1098/rspa.2000.0569
    [35] N. S. Wilkes, Continuous dependence and instability in linear thermoelasticity, SIAM J. Math. Anal., 11 (1980), 292–299. doi: 10.1137/0511027
    [36] R. J. Knops, L. E. Payne, Growth estimates for solutions of evolutionary equations in Hilbert space with applications in elastodynamics, Arch. Ration. Mech. Anal., 41 (1971), 363–398. doi: 10.1007/BF00281873
    [37] N. S. Wilkes, On the nonexistence of semigroups for some equations of continuum mechanics, Proc. Roy. Soc. Edinburgh Sect. A, 86 (1980), 303–306. doi: 10.1017/S0308210500012208
    [38] J. E. Marsden, T. J. R. Hugues, Mathematical Foundations of Elasticity, Prentice Hall International, London, 1983.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2706) PDF downloads(158) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog