Research article

Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results

  • Received: 30 December 2020 Accepted: 02 March 2021 Published: 12 March 2021
  • MSC : 62F09, 62G34

  • This paper is concerned with statistical inference of multiple constant-stress testing for progressive type-II censored data with binomial removal. The failure times of the test units are assumed to be independent and follow the modified Kies exponential (MKEx) distribution. The maximum likelihood method as well as Bayes method are used to derive both point and interval estimates of the parameters. Furthermore, a real data application for transformers turn insulation is used to illustrate the proposed methods. Moreover, this real data set is used to show that MKEx distribution can be a possible alternative model to the exponential, generalized exponential and Weibull distributions. Finally, simulation studies are carried out to investigate the accuracy of the different estimation methods.

    Citation: A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez. Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results[J]. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310

    Related Papers:

  • This paper is concerned with statistical inference of multiple constant-stress testing for progressive type-II censored data with binomial removal. The failure times of the test units are assumed to be independent and follow the modified Kies exponential (MKEx) distribution. The maximum likelihood method as well as Bayes method are used to derive both point and interval estimates of the parameters. Furthermore, a real data application for transformers turn insulation is used to illustrate the proposed methods. Moreover, this real data set is used to show that MKEx distribution can be a possible alternative model to the exponential, generalized exponential and Weibull distributions. Finally, simulation studies are carried out to investigate the accuracy of the different estimation methods.



    加载中


    [1] A. H. Abdel-Hamid, Constant-partially accelerated life tests for Burr type-XII distribution with progressive type-II censoring, Comput. Stat. Data Anal., 53 (2009), 2511-2523. doi: 10.1016/j.csda.2009.01.018
    [2] A. H. Abdel-Hamid, E. K. AL-Hussaini, Inference for a progressive stress model from Weibull distribution under progressive type-II censoring, J. Comput. Appl. Math., 235 (2011), 5259-5271. doi: 10.1016/j.cam.2011.05.035
    [3] A. H. Abdel-Hamid, E. K. AL-Hussaini, Progressive stress accelerated life tests under finite mixture models, Metrika, 66 (2007), 213-231. doi: 10.1007/s00184-006-0106-3
    [4] A. H. Abdel-Hamid, E. K. AL-Hussaini, Bayesian prediction for type-II progressive-censored data from the Rayleigh distribution under progressive-stress model, J. Stat. Comput. Simul., 84 (2014), 1297-1312. doi: 10.1080/00949655.2012.741132
    [5] A. H. Abdel-Hamid, T. A. Abushal, Inference on progressive-stress model for the exponentiated exponential distribution under type-II progressive hybrid censoring, J. Stat. Comput. Simul., 85 (2015), 1165-1186. doi: 10.1080/00949655.2013.868463
    [6] A. M. Abd El-Raheem, Optimal plans of constant-stress accelerated life tests for extension of the exponential distribution, J. Test. Eval., 47 (2019), 1586-1605.
    [7] A. M. Abd El-Raheem, Optimal plans and estimation of constant-stress accelerated life tests for the extension of the exponential distribution under type-I censoring, J. Test. Eval., 47 (2019), 3781-3821.
    [8] A. M. Abd El-Raheem, Optimal design of multiple accelerated life testing for generalized half-normal distribution under type-I censoring, J. Comput. Appl. Math., 368 (2019), 112539.
    [9] A. M. Abd El-Raheem, Inference and optimal design of multiple constant-stress testing for generalized half-normal distribution under type-II progressive censoring, J. Stat. Comput. Simul., 89 (2019), 3075-3104. doi: 10.1080/00949655.2019.1656722
    [10] A. M. Abd El-Raheem, Optimal design of multiple constant-stress accelerated life testing for the extension of the exponential distribution under type-II censoring, J. Comput. Appl. Math., 382 (2021), 113094. doi: 10.1016/j.cam.2020.113094
    [11] A. M. Abd El-Raheem, M. H. Abu-Moussa, M. M. Mohie El-Din, E. H. Hafez, Accelerated Life Tests under Pareto-IV Lifetime Distribution: Real Data Application and Simulation Study, Mathematics, 8 (2020), 1786. doi: 10.3390/math8101793
    [12] E. K. AL-Hussaini, A. H. Abdel-Hamid, A. F. Hashem, One-sample Bayesian prediction intervals based on progressively type-II censored data from the half-logistic distribution under progressive stress model, Metrika, 78 (2015), 771-783. doi: 10.1007/s00184-014-0526-4
    [13] E. M. Almetwally, H. M. Almongy, A. E. Mubarak sayed, Bayesian and Maximum Likelihood Estimation for the Weibull Generalized Exponential Distribution Parameters Using Progressive Censoring Schemes, Pak. J. Stat. Oper. Res., 14 (2018), 853-868.
    [14] R. Alshenawy, A. Al-Alwan, E. M. Almetwally, A. Z. Afify, H. M. Almongy, Progressive Type-II Censoring Schemes of Extended Odd Weibull Exponential Distribution with Applications in Medicine and Engineering, Mathematics, 8 (2020), 1679. doi: 10.3390/math8101679
    [15] A. A. Al-Babtain, M. K. Shakhatreh, M. Nassar, A. Z. Afify, A New Modified Kies Family: Properties, Estimation Under Complete and Type-II Censored Samples, and Engineering Applications, Mathematics, 8 (2020), 1345. doi: 10.3390/math8101793
    [16] N. Balakrishnan, R. Aggarwala, Progressive Censoring: Theory, Methods, and Applications, Birkhauser, Boston, 2000.
    [17] N. Balakrishnan, D. Han, Exact inference for a simple step stress model with competing risks for failure from exponential distribution under type-II censoring, J. Stat. Plan. Inf., 138 (2008), 4172-4186. doi: 10.1016/j.jspi.2008.03.036
    [18] M. H. Chen, Q. M. Shao, Monte Carlo Estimation of Bayesian Credible and HPD Intervals, J. Comput. Graphical Stat., 8 (1999), 69-92.
    [19] M. H. DeGroot, P. K. Goel, Bayesian Estimation and Optimal Designs in Partially Accelerated Life Testing, Nav. Res. Logist., 26 (1979), 223-235. doi: 10.1002/nav.3800260204
    [20] S. Dey, M. Nassar, D. Kumar, Moments and estimation of reduced Kies distribution based on progressive type-II right censored order statistics. Hacet. J. Math. Stat., 48 (2019), 332-350.
    [21] E. S. A. El-Sherpieny, E. M. Almetwally, H. Z. Muhammed, Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution, Phys. A, 553 (2020), 124251. doi: 10.1016/j.physa.2020.124251
    [22] E. H. Hafez, F. H. Riad, S. A. M. Mubarak, M. S. Mohamed, Study on Lindley Distribution Accelerated Life Tests: Application and Numerical Simulation, Symmetry, 12 (2020), 2080. doi: 10.3390/sym12122080
    [23] B. Efron, Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7 (1979), 1-26. doi: 10.1214/aos/1176344552
    [24] A. A. Ismail, Inference for a step-stress partially accelerated life test model with an adaptive Type-II progressively hybrid censored data from Weibull distribution, J. Comput. Appl. Math., 260 (2014), 533-542. doi: 10.1016/j.cam.2013.10.014
    [25] Z. F. Jaheen, H. M. Moustafa, G. H. Abd El-Monem, Bayes inference in constant partially accelerated life tests for the generalized exponential distribution with progressive censoring, Commun. Stat. Theory Methods, 43 (2014), 2973-2988. doi: 10.1080/03610926.2012.687068
    [26] C. S. Kumar, S. H. S. Dharmaja, On reduced Kies distribution, In: C. S. Kumar, M. Chacko, E. I. A. Sathar, Editors, Collection of Recent Statistical Methods and Applications, Department of Statistics, University of Kerala Publishers: Trivandrum, India, 2013,111-123.
    [27] C. S. Kumar, S. H. S. Dharmaja, The exponentiated reduced Kies distribution: Properties and applications, Commun. Stat. Theory Methods, 46 (2017), 8778-8790. doi: 10.1080/03610926.2016.1193199
    [28] S. Limon, O. P. Yadav, H. Liao, A literature review on planning and analysis of accelerated testing for reliability assessment, Qual. Reliab. Eng. Int., 33 (2017), 2361-2383. doi: 10.1002/qre.2195
    [29] M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. A. Ali, A. M. Abd El-Raheem, Estimation in step-stress accelerated life tests for Weibull distribution with progressive first-failure censoring, J. Stat. Appl. Prob., 3 (2015), 403-411.
    [30] M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. A. Ali, A. M. Abd El-Raheem, Estimation in step-stress accelerated life tests for power generalized Weibull distribution with progressive censoring, Adv. Stat., 2015 (2015), 319051.
    [31] M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. A. Ali, A. M. Abd El-Raheem, Parametric inference on step-stress accelerated life testing for the extension of exponential distribution under progressive type-II censoring, Commun. Stat. Appl. Methods, 23 (2016), 269-285.
    [32] M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. Ali, A. M. Abd El-Raheem, Estimation in constant-stress accelerated life tests for extension of the exponential distribution under progressive censoring, Metron, 74 (2016), 253-273. doi: 10.1007/s40300-016-0089-4
    [33] M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. A. Ali, A. M. Abd El-Raheem, Optimal plans of constant-stress accelerated life tests for the Lindley distribution, J. Test. Eval., 45 (2017), 1463-1475.
    [34] M. M. Mohie El-Din, S. E. Abu-Youssef, N. S. Ali, A. M. Abd El-Raheem, Classical and Bayesian inference on progressive-stress accelerated life testing for the extension of the exponential distribution under progressive type-II censoring, Qual. Reliab. Eng. Int., 33 (2017), 2483-2496. doi: 10.1002/qre.2212
    [35] M. M. Mohie El-Din, M. M. Amein, A. M. Abd El-Raheem, E. H. Hafez, F. H. Riad, Bayesian inference on progressive-stress accelerated life testing for the exponentiated Weibull distribution under progressive type-II censoring, J. Stat. Appl. Pro. Lett., 7 (2020), 109-126. doi: 10.18576/jsapl/070302
    [36] W. Nelson, Accelerated Testing: Statistical Models, Test Plans and Data Analysis, Wiley: New York, NY, USA, 1990.
    [37] N. Chandra, M. A. Khan, Analysis and optimum plan for 3-step step-stress accelerated life tests with Lomax model under progressive type-I censoring, Commun. Math. Stat., 6 (2018), 73-90. doi: 10.1007/s40304-017-0123-8
    [38] R. Pakyari, N. Balakrishnan, A general purpose approximate goodness-of-fit test for progressively type-II censored data, IEEE Trans. Reliab., 61 (2012), 238-243. doi: 10.1109/TR.2012.2182811
    [39] L. Wang, Y. Shi, Estimation for constant-stress accelerated life test from generalized half-normal distribution, J. Syst. Eng. Electronics, 28 (2017), 810-816. doi: 10.21629/JSEE.2017.04.21
    [40] H. M. Aljohani, E. M. Almetwally, A. S. Alghamdi, E. H. Hafez, Ranked set sampling with application of modified Kies exponential distribution, Alexandria Eng. J., 60 (2021), 4041-4046. doi: 10.1016/j.aej.2021.02.043
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2562) PDF downloads(192) Cited by(30)

Article outline

Figures and Tables

Figures(5)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog