Research article

A pair of dual Hopf algebras on permutations

  • Received: 24 November 2020 Accepted: 18 February 2021 Published: 09 March 2021
  • MSC : 05A05, 08C20, 16T05

  • Hopf algebras are important objects in algebraic combinatorics since they have strong stability. In particular, its dual space is an important tool to study the properties of the original Hopf algebra. Based on the classical shuffle Hopf algebra structure, we have proved that the shuffle product and deconcatenation coproduct on the standard factorizations of permutations define a graded shuffle Hopf algebra on permutations. In this paper, we figure out a new product and a new coproduct on permutations to get the duality of this graded shuffle Hopf algebra.

    Citation: Mingze Zhao, Huilan Li. A pair of dual Hopf algebras on permutations[J]. AIMS Mathematics, 2021, 6(5): 5106-5123. doi: 10.3934/math.2021302

    Related Papers:

  • Hopf algebras are important objects in algebraic combinatorics since they have strong stability. In particular, its dual space is an important tool to study the properties of the original Hopf algebra. Based on the classical shuffle Hopf algebra structure, we have proved that the shuffle product and deconcatenation coproduct on the standard factorizations of permutations define a graded shuffle Hopf algebra on permutations. In this paper, we figure out a new product and a new coproduct on permutations to get the duality of this graded shuffle Hopf algebra.



    加载中


    [1] H. Hopf, Über die topologie der Gruppen-Mannigfaltigkeiten und ihrer verallgemeinerungen, In: Selecta Heinz Hopf, Berlin: Springer, 1941. Available from: https://doi.org/10.1007/978-3-662-25046-4_9.
    [2] J. W. Milnor, J. C. Moore, On the structure of Hopf algebras, Ann. Math., 81 (1965), 211–264. doi: 10.2307/1970615
    [3] M. E. Sweedler, Hopf Algebras, New York: W. A. Benjamin, Inc., 1969.
    [4] V. A. Artamonov, The structure of Hopf algebras, J. Math. Sci., 71 (1994), 2289–2328. doi: 10.1007/BF02111020
    [5] I. Kaplansky, Bialgebras, Department of Mathematics University of Chicago Chicago ILL, 2 (1975), 247–251.
    [6] N. van den Hijligenberg, R. Martini, Differential Hopf algebra structures on the universal enveloping algebra of a Lie algebra, J. Math. Phys., 37 (1996), 524. Available from: https://doi.org/10.1063/1.531407.
    [7] C. Reutenauer, Free Lie algebras, In: Handbook of Algebra, Amsterdam: Elsevier, 2003. Available from: https://doi.org/10.1016/S1570-7954(03)80075-X.
    [8] L. A. Duffaut Espinosa, K. Ebrahimi-Fard, W. S. Gray, A combinatorial hopf algebra for nonlinear output feedback control systems, J. Algebra, 453 (2016), 609–643. doi: 10.1016/j.jalgebra.2016.01.004
    [9] J. Høyrup, What is "geometric algebra", and what has it been in historiography?$^1$, AIMS Math., 2 (2017), 128–160. doi: 10.3934/Math.2017.1.128
    [10] J. Cheng, Y. Wang, R. B. Zhang, Degenerate quantum general linear groups, 2018. Available from: https://arXiv.org/abs/1805.07191.
    [11] T. Cheng, H. L. Huang, Y. P. Yang, Generalized Clifford algebras as algebras in suitable symmetric linear Gr-categories, SIGMA, 12 (2016), 1–11.
    [12] J. Tian, B. L. Li, Coalgebraic structure of genetic inheritance, Math. Biosci. Eng., 1 (2004), 243–266. doi: 10.3934/mbe.2004.1.243
    [13] M. Van den Bergh, A duality theorem for Hopf algebras, Methods Ring Theory, 129 (1984), 517–522.
    [14] R. J. Blattner, S. Montgomery, A duality theorem for Hopf module algebras, J. Algebra, 95 (1985), 153–172. doi: 10.1016/0021-8693(85)90099-7
    [15] S. A. Joni, G. C. Rota, Coalgebras and bialgebras in combinatorics, Stud. Appl. Math., 61 (1979), 93–139. doi: 10.1002/sapm197961293
    [16] M. Aguiar, N. Bergeron, F. Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Compos. Math., 142 (2006), 1–30. doi: 10.1112/S0010437X0500165X
    [17] N. Bergeron, H. Li, Algebraic structures on Grothendieck groups of a tower of algebras, J. Algebra, 321 (2009), 2068–2084. doi: 10.1016/j.jalgebra.2008.12.005
    [18] N. Bergeron, H. Li, T. Lam, Combinatorial Hopf algebras and towers of algebras-dimension, quantization and functoriality, Algebr. Represent. Theory, 15 (2012), 675–696. doi: 10.1007/s10468-010-9258-y
    [19] H. Li, J. Morse, P. Shields, Structure constants for $K$-theory of Grassmannians, revisited, J. Comb. Theory, Ser. A, 144 (2016), 306–325. doi: 10.1016/j.jcta.2016.06.016
    [20] H. Li, T. MacHenry, A. Conci, Rational convolution roots of isobaric polynomials, Rocky Mt. J. Math., 4 (2017), 1259–1275.
    [21] L. Cao, Z. Chen, X. Duan, H. Li, Permanents of doubly substochastic matrices, Linear Multilinear Algebra, 68 (2020), 594–605. Available from: https://doi.org/10.1080/03081087.2018.1513448.
    [22] L. Cao, Z. Chen, Partitions of the polytope of doubly substochastic matrices, Linear Algebra Appl., 563 (2019), 98–122. doi: 10.1016/j.laa.2018.10.024
    [23] L. Cao, Z. Chen, X. Duan, S. Koyuncu, H. Li, Diagonal sums of doubly substochastic matrices, Electron. J. Linear Algebra, 35 (2017), 42–52.
    [24] L. Cao, A minimal completion of (0, 1)-matrices without total support, Linear Multilinear Algebra, 67 (2018), 1522–1530. Available from: https://doi.org/10.1080/03081087.2018.1460793.
    [25] R. Ree, Lie elements and an algebra associated with shuffles, Ann. Math., 68 (1958), 210–220. doi: 10.2307/1970243
    [26] K. T. Chen, An algebraic dualization of fundamental groups, Bull. Am. Math. Soc., 75 (1969), 1020–1024. doi: 10.1090/S0002-9904-1969-12345-1
    [27] M. Lothaire, Combinatorics on Words, UK: Cambridge University Press, 1997.
    [28] C. Malvenuto, C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, 177 (1995), 967–982. doi: 10.1006/jabr.1995.1336
    [29] A. M. Garsia, J. Remmel, Shuffles of permutations and the Kronecker product, Graphs Combinatorics, 1 (1985), 217–263. doi: 10.1007/BF02582950
    [30] M. Aguiar, F. Sottile, Structure of the Malvenuto-Reutenauer Hopf algebra of permutations, Adv. Math., 191 (2005), 225–275. doi: 10.1016/j.aim.2004.03.007
    [31] N. Bergeron, C. Ceballos, V. Pilaud, Hopf dreams and diagonal harmonics, 2018. Available from: https://arXiv.org/abs/1807.03044.
    [32] M. Zhao, H. Li, A Hopf algebra structure on permutations, J. Shangdong Norm. Univ. (Natual Sci.), 35 (2020), 417–422.
    [33] C. Schensted, Longest increasing and decreasing subsequences, Can. J. Math., 13 (1961), 179–191. doi: 10.4153/CJM-1961-015-3
    [34] Y. Vargas, Hopf algebra of permutation pattern functions, 26th International Conference on Formal Power Series and Algebraic Combinatorics, Chicago, United States, (2014), 839–850. Available from: https://hal.inria.fr/hal-01207565.
    [35] S. Fomin, Duality of graded graphs, J. Algebraic Combinatorics, 3 (1994), 357–404. Available from: https://doi.org/10.1023/A:1022412010826.
    [36] J. C. Aval, N. Bergeron, J. Machacek, New invariants for permutations, orders and graphs, Adv. Appl. Math., 121 (2020), 102080. doi: 10.1016/j.aam.2020.102080
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2262) PDF downloads(178) Cited by(2)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog