This paper deals with the existence and uniqueness of solution for the Cauchy problem of $ \varphi- $Caputo fractional evolution equations involving Volterra and Fredholm integral kernels. We derive a mild solution in terms of semigroup and construct a monotone iterative sequence for extremal solutions under a noncompactness measure condition of the nonlinearity. These results can be reduced to previous works with the classical Caputo fractional derivative. Furthermore, we give an example of initial-boundary value problem for the time-fractional parabolic equation to illustrate the application of the results.
Citation: Apassara Suechoei, Parinya Sa Ngiamsunthorn. Extremal solutions of $ \varphi- $Caputo fractional evolution equations involving integral kernels[J]. AIMS Mathematics, 2021, 6(5): 4734-4757. doi: 10.3934/math.2021278
This paper deals with the existence and uniqueness of solution for the Cauchy problem of $ \varphi- $Caputo fractional evolution equations involving Volterra and Fredholm integral kernels. We derive a mild solution in terms of semigroup and construct a monotone iterative sequence for extremal solutions under a noncompactness measure condition of the nonlinearity. These results can be reduced to previous works with the classical Caputo fractional derivative. Furthermore, we give an example of initial-boundary value problem for the time-fractional parabolic equation to illustrate the application of the results.
[1] | R. Hilfer, Eds., Applications of fractional calculus in physics, Singapore: World scientific, 2000. |
[2] | F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, In: Fractals and Fractional Calculus in Continuum Mechanics, (1997), 291–348. |
[3] | H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. doi: 10.1016/j.cnsns.2018.04.019 |
[4] | H. Fallahgoul, S. Focardi, F. Fabozzi, Fractional calculus and fractional processes with applications to financial economics: Theory and application, Academic Press, 2016. |
[5] | R. Matušů, Application of fractional order calculus to control theory, Int. J. Math. Models Methods Appl. Sci., 5 (2020), 1162–1169. |
[6] | P. A. Naik, J. Zu, K. M. Owolabi, Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Physica A: Stat. Mech. Appl., 545 (2020), 123816. doi: 10.1016/j.physa.2019.123816 |
[7] | P. A. Naik, K. M. Owolabi, Global dynamics of a fractional order model for the transmission of HIV epidemic with optimal control, Chaos, Solitons Fractals, 138 (2020), 109826. doi: 10.1016/j.chaos.2020.109826 |
[8] | P. A. Naik, K. M. Owolabi, M. Yavuz, J. Zu, Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells, Chaos, Solitons Fractals, 140 (2020), 110272. doi: 10.1016/j.chaos.2020.110272 |
[9] | X. J. Yang, F. Gao, Y. Ju, General fractional derivatives with applications in viscoelasticity, Academic Press, 2020. |
[10] | K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Mathematics in Science and Engineering, Academic Press, New York, 1974. |
[11] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science Limited: Amsterdam, Netherlands, 2006. |
[12] | K. M. Owolabi, A. Atangana, Numerical Methods for Fractional Differentiation. Springer Singapore, 2019. |
[13] | K. M. Owolabi, H. Dutta, Numerical Techniques for Fractional Competition Dynamics with Power-, Exponential-and Mittag-Leffler Laws, In: Mathematics Applied to Engineering, Modelling, and Social Issues (2019), 313–332. |
[14] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006 |
[15] | F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discret Cont. Dyn. Syst. SerS., 13 (2018), 709–722. |
[16] | S. Z. Rida, A. M. A El-Sayed, A. A. M. Arafa, On the solutions of time-fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3847–3854. doi: 10.1016/j.cnsns.2010.02.007 |
[17] | E. F. D. Goufo, Y. Khan, S. Mugisha, Control parameter & solutions to generalized evolution equations of stationarity, relaxation and diffusion, Results Physics, 9 (2018), 1502–1507. doi: 10.1016/j.rinp.2018.04.051 |
[18] | M. Naber, Time fractional Schrödinger equation, J. Math. Physics, 45 (2004), 3339–3352. doi: 10.1063/1.1769611 |
[19] | S. Wang, M. Xu, Generalized fractional Schrödinger equation with space-time fractional derivatives, J. Math. Physics, 48 (2007), 043502. doi: 10.1063/1.2716203 |
[20] | S. Momani, Z. Odibat, Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method, Appl. Math. Comput., 177 (2006), 488–494. |
[21] | R. G. Batogna, A. Atangana, Generalised class of time fractional Black Scholes equation and numerical analysis, Discrete Cont. Dyn. Syst.-S, 12 (2019), 435. |
[22] | J. Wang, Y. Zhou, Mittag-Leffler-Ulam stabilities of fractional evolution equations, Appl. Math. Lett., 25 (2012) , 723–728. doi: 10.1016/j.aml.2011.10.009 |
[23] | Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Academic Press, 2016. |
[24] | E. F. D. Goufo, S. Kumar, S. B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos, Solitons Fractals, 130 (2020), 109467. doi: 10.1016/j.chaos.2019.109467 |
[25] | E. F. D. Goufo, I. T. Toudjeu, Analysis of recent fractional evolution equations and applications, Chaos, Solitons Fractals, 126 (2019), 337–350. doi: 10.1016/j.chaos.2019.07.016 |
[26] | E. F. D. Goufo, Evolution equations with a parameter and application to transport-convection differential equations, Turkish J. Math., 41 (2017), 636–654. doi: 10.3906/mat-1603-107 |
[27] | J. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls, Nonlinear Anal., Real World Appl., 12 (2010), 262–272. |
[28] | Y. Zhou, F. Jiao, Nonlocal cauchy problem for fractional evolution equations, Nonlinear Anal., Real World Appl., 11 (2010), 4465–4475. doi: 10.1016/j.nonrwa.2010.05.029 |
[29] | Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063–1077. doi: 10.1016/j.camwa.2009.06.026 |
[30] | M. M. El-Borai, K. E. S. El-Nadi, E. G. El-Akabawy, On some fractional evolution equations, Comp. Math. Appl., 59 (2010), 1352–1355. doi: 10.1016/j.camwa.2009.05.005 |
[31] | M. Li, C. Chen, F. B. Li, On fractional powers of generators of fractional resolvent families, J. Funct. Anal., 259 (2010), 2702–2726. doi: 10.1016/j.jfa.2010.07.007 |
[32] | P. Chen, Y. Li, Q. Chen, B. Feng, On the initial value problem of fractional evolution equations with noncompact semigroup, Comput. Math. Appl., 67 (2014), 1108–1115. doi: 10.1016/j.camwa.2014.01.002 |
[33] | P. Chen, X. Zhang, Y. Li, Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal., 14 (2020), 559–584. doi: 10.1007/s43037-019-00008-2 |
[34] | E. G. Bajlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. Thesis, University Press Facilities, Eindhoven University of Technology, Eindhoven, The Netherlands, 2001. |
[35] | E. Bazhlekova, The abstract Cauchy problem for the fractional evolution equation, Fract. Calc. Appl. Anal, 1 (1998), 255–270. |
[36] | J. V. D. C. Sousa, F. Jarad, T. Abdeljawad, Existence of mild solutions to Hilfer fractional evolution equations in Banach space, Annals Funct. Anal., 12 (2021), 1–16. doi: 10.1007/s43034-020-00089-3 |
[37] | G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Pitman Publishing, Marshfield, MA, USA, 1985. |
[38] | P. Chen, Y. Li, Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach spaces, Nonlinear Anal., 74 (2011), 3578–3588. |
[39] | S. W. Du, V. Lakshmikantham, Monotone iterative technique for differential equations in a Banach space, J.Math. Anal. Appl., 87 (1982), 454–459. |
[40] | J. X. Sun, Z. Q. Zhao, Extremal solutions of initial value problem for integro-differential equations of mixed type in Banach spaces, Ann. Differential Equations, 8 (1992), 469–475. |
[41] | J. Mu, Y. Li, Monotone iterative technique for impulsive fractional evolution equations, J. Inequal. Appl., 2011 (2011), 125. doi: 10.1186/1029-242X-2011-125 |
[42] | J. Mu, Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions, Bound. Value Probl., 2012 (2012), 71. doi: 10.1186/1687-2770-2012-71 |
[43] | B. Li, H. Gou, Monotone iterative method for the periodic boundary value problems of impulsive evolution equations in Banach spaces, Chaos Solitons Fractals, 110 (2018), 209–215. doi: 10.1016/j.chaos.2018.03.027 |
[44] | H. Gou, Y. Li, The method of lower and upper solutions for impulsive fractional evolution equations in Banach spaces, J. Korean Math. Society, 57 (2020), 61–88. |
[45] | H. Derbazi, Z. Baitiche, M. Benchohra, A. Cabada, Initial value problem for nonlinear fractional differential equations with $\psi-$caputo derivative via monotone iterative technique, Axioms, 9 (2020), 57. |
[46] | L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 32 (2007), 1468–1476. |
[47] | S. Rezapour, R. Hamlbarani, Some notes on the paper: Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 345 (2008), 719–724. doi: 10.1016/j.jmaa.2008.04.049 |
[48] | Y. Du, Fixed points of increasing operators in ordered Banach spaces and applications, Appl. Anal., 38 (1990), 1–20. |
[49] | Y. Adjabi, F. Jarad, T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457–5473. doi: 10.2298/FIL1717457A |
[50] | J. Vanterler da, C. Sousa, E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi $-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. |
[51] | F. Mainardi, On the initial value problem for the fractional diffusion-wave equation, Waves and Stability in continuous Media (S. Rionero, T. Ruggeri, Eds.), 1994,246–251 |
[52] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, 198 (1998). |
[53] | J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, 60. Marcel Dekker, Inc., New York, 1980. |
[54] | K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. |
[55] | L. S. Liu, C. X. Wu, F. Guo, A unique solution of initial value problems for first order impulsive integro-differential equations of mixed type in Banach spaces, J. Math. Anal. Appl., 275 (2002), 369–385. doi: 10.1016/S0022-247X(02)00366-9 |
[56] | H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351–1371. |
[57] | A. Suechoei, P. Sa Ngiamsunthorn, Existence uniqueness and stability of mild solutions for semilinear $\psi$-Caputo fractional evolution equations, Adv. Differ. Equ, 2020 (2020), 1–28. doi: 10.1186/s13662-019-2438-0 |