Research article

Estimates of upper bound for differentiable mappings related to Katugampola fractional integrals and $ p $-convex mappings

  • Received: 08 September 2020 Accepted: 13 January 2021 Published: 21 January 2021
  • MSC : 26A33, 26A51, 26D10, 26D15

  • We use the definition of a fractional integral operators, recently introduced by Katugampola, to establish a parameterized identity associated with differentiable mappings. The identity is then used to derive the estimates of upper bound for mappings whose first derivatives absolute values are $ p $-convex mappings. Four examples are also provided to illustrate the obtained results.

    Citation: Yuping Yu, Hui Lei, Gou Hu, Tingsong Du. Estimates of upper bound for differentiable mappings related to Katugampola fractional integrals and $ p $-convex mappings[J]. AIMS Mathematics, 2021, 6(4): 3525-3545. doi: 10.3934/math.2021210

    Related Papers:

  • We use the definition of a fractional integral operators, recently introduced by Katugampola, to establish a parameterized identity associated with differentiable mappings. The identity is then used to derive the estimates of upper bound for mappings whose first derivatives absolute values are $ p $-convex mappings. Four examples are also provided to illustrate the obtained results.



    加载中


    [1] P. Agarwal, Some inequalities involving Hadamard-type $k$-fractional integral operators, Math. Meth. Appl. Sci., 40 (2017), 3882–3891. doi: 10.1002/mma.4270
    [2] A. O. Akdemir, M. Tunç, Ostrowski type inequalities for $s$-logarithmically convex functions in the second sense with applications, Georgian Math. J., 22 (2015), 1–7. doi: 10.1515/gmj-2014-0061
    [3] A. Akkurt, M. Z. Sarikaya, H. Budak, H. Yildirim, Generalized Ostrowski type integral inequalities involving generalized moments via local fractional integrals, RACSAM, 111 (2017), 797–807. doi: 10.1007/s13398-016-0336-9
    [4] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are $s$-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. doi: 10.1016/j.aml.2010.04.038
    [5] A. Barani, Hermite–Hadamard and Ostrowski type inequalities on hemispheres, Mediterr. J. Math., 13 (2016), 4253–4263. doi: 10.1007/s00009-016-0743-3
    [6] H. Budak, M. Z. Sarikaya, On generalized Ostrowski-type inequalities for functions whose first derivatives absolute values are convex, Turkish J. Math., 40 (2016), 1193–1210. doi: 10.3906/mat-1504-56
    [7] P. Cerone, S. S. Dragomir, E. Kikianty, Jensen-Ostrowski type inequalities and applications for $f$-divergence measures, Appl. Math. Comput., 266 (2015), 304–315.
    [8] H. Chen, U. N. Katugampola, Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. doi: 10.1016/j.jmaa.2016.09.018
    [9] S. S. Dragomir, R. P. Agarwal, N. S. Barnett, Inequalities for Beta and Gamma functions via some classical and new integral inequalities, J. Inequal. Appl., 5 (2000), 103–165.
    [10] T. S. Du, M. U. Awan, A. Kashuri, S. S. Zhao, Some $k$-fractional extensions of the trapezium inequalities through generalized relative semi-$(m, h)$-preinvexity, Appl. Anal., 2019 (2019), 1–21.
    [11] S. Erden, H. Budak, M. Z. Sarikaya, S. Iftikhar, P. Kumam, Fractional Ostrowski type inequalities for bounded functions, J. Inequal. Appl., 2020 (2020), 123. doi: 10.1186/s13660-020-02381-1
    [12] S. Erden, H. Budak, M. Z. Sarikaya, An Ostrowski type inequality for twice differentiable mappings and applications, Math. Model. Anal., 21 (2016), 522–532. doi: 10.3846/13926292.2016.1185473
    [13] M. Gürbüz, Y. Taşdan, E. Set, Some inequalities obtained by fractional integrals of positive real orders, J. Inequal. Appl., 2020 (2020), 152. doi: 10.1186/s13660-020-02418-5
    [14] M. Gürbüz, Y. Taşdan, E. Set, Ostrowski type inequalities via the Katugampola fractional integrals, AIMS Mathematics, 5 (2020), 42–53. doi: 10.3934/math.2020004
    [15] G. Hu, H. Lei, T. S. Du, Some parameterized integral inequalities for $p$-convex mappings via the right Katugampola fractional integrals, AIMS Mathematics, 5 (2020), 1425–1445. doi: 10.3934/math.2020318
    [16] İ. İşcan, Ostrowski type inequalities for $p$-convex functions, New Trends in Mathematical Sciences, 4 (2016), 140–150. doi: 10.20852/ntmsci.2016318838
    [17] İ. İşcan, New general integral inequalities for quasi-geometrically convex functions via fractional integrals, J. Inequal. Appl., 2013 (2013), 491. doi: 10.1186/1029-242X-2013-491
    [18] İ. İşcan, S. Turhan, S. Maden, Hermite–Hadamard and Simpson-like type inequalities for differentiable $p$-quasi-convex functions, Filomat, 31 (2017), 5945–5953. doi: 10.2298/FIL1719945I
    [19] M. Jleli, D. O'Regan, B. Samet, On Hermite–Hadamard type inequalities via generalized fractional integrals, Turkish J. Math., 40 (2016), 1221–1230. doi: 10.3906/mat-1507-79
    [20] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865.
    [21] S. Kermausuor, Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals, J. Nonlinear Sci. Appl., 12 (2019), 509–522. doi: 10.22436/jnsa.012.08.02
    [22] M. Kunt, İ. İşcan, Hermite–Hadamard–Fejér type inequalities for $p$-convex functions via fractional integrals, Iran. J. Sci. Technol. A, 42 (2018), 2079–2089. doi: 10.1007/s40995-017-0352-4
    [23] M. Kunt, İ. İşcan, Hermite–Hadamard type inequalities for $p$-convex functions via fractional integrals, MJPAA, 3 (2017), 22–35.
    [24] M. Kunt, İ. İşcan, Hermite–Hadamard–Fejér type inequalities for $p$-convex functions, Arab J. Math. Sci., 23 (2017), 215–230.
    [25] N. I. Mahmudov, S. Emin, Fractional-order boundary value problems with Katugampola fractional integral conditions, Adv. Differ. Equ., 2018 (2018), 81. doi: 10.1186/s13662-018-1538-6
    [26] N. Mehreen, M. Anwar, Integral inequalities for some convex functions via generalized fractional integrals, J. Inequal. Appl., 2018 (2018), 208. doi: 10.1186/s13660-018-1807-7
    [27] İ. Mumcu, E. Set, A. O. Akdemir, Hermite–Hadamard type inequalities for harmonically convex functions via Katugampola fractional integrals, Miskolc Math. Notes, 20 (2019), 409–424. doi: 10.18514/MMN.2019.2722
    [28] M. A. Noor, M. U. Awan, K. I. Noor, M. Postolache, Some integral inequalities for $p$-convex functions, Filomat, 30 (2016), 2435–2444. doi: 10.2298/FIL1609435N
    [29] M. A. Noor, M. U. Awan, M. V. Mihai, K. I. Noor, Hermite–Hadamard inequalities for differentiable $p$-convex functions using hypergeometric functions, Publ. I. Math. Beograd, 100 (2016), 251–257. doi: 10.2298/PIM1614251N
    [30] M. A. Noor, M. U. Awan, M. V. Mihai, K. I. Noor, Bounds involving Gauss's hypergeometric functions via $(p, h)$-convexity, U. P. B. Sci. Bull. Series A, 79 (2017), 41–48.
    [31] A. Ostrowski, Über die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10 (1938), 226–227.
    [32] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [33] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Amsterdam: Gordon and Breach, 1993.
    [34] M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, P. Am. Math. Soc., 145 (2017), 1527–1538.
    [35] E. Set, M. E. Özdemir, M. Z. Sarikaya, A. O. Akdemir, Ostrowski-type inequalities for strongly convex functions, Georgian Math. J., 25 (2018), 109–115. doi: 10.1515/gmj-2017-0043
    [36] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are $s$-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147–1154. doi: 10.1016/j.camwa.2011.12.023
    [37] J. V. D. Sousa, E. C. de Oliveira, The Minkowski's inequality by means of a generalized fractional integral, AIMS Mathematics, 3 (2018), 131–147. doi: 10.3934/Math.2018.1.131
    [38] A. Thatsatian, S. K. Ntouyas, J. Tariboon, Some Ostrowski type inequalities for $p$-convex functions via generalized fractional integrals, J. Math. Inequal., 13 (2019), 467–478.
    [39] T. Toplu, E. Set, İ. İşcan, S. Maden, Hermite–Hadamard type inequalities for $p$-convex functions via Katugampola fractional integrals, Facta Univ. Ser. Math. Inform., 34 (2019), 149–164.
    [40] F. Usta, H. Budak, M. Z. Sarikaya, Montgomery identities and Ostrowski type inequalities for fractional integral operators, RACSAM, 113 (2019), 1059–1080. doi: 10.1007/s13398-018-0534-8
    [41] J. Wang, J. Deng, M. Fečkan, Hermite–Hadamard-type inequalities for $r$-convex functions based on the use of Riemann–Liouville fractional integrals, Ukrainian Math. J., 65 (2013), 193–211. doi: 10.1007/s11253-013-0773-y
    [42] J. R. Wang, J. H. Deng, M. Fečkan, Exploring $s$-$e$-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals, Math. Slovaca, 64 (2014), 1381–1396.
    [43] S. D. Zeng, D. Baleanu, Y. R. Bai, G. Wu, Fractional differential equations of Caputo–Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549–554.
    [44] K. S. Zhang, J. P. Wan, $p$-convex functions and their properties, Pure Appl. Math., 23 (2007), 130–133.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1923) PDF downloads(102) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog