Research article

Solutions of multiplicative ordinary differential equations via the multiplicative differential transform method

  • Received: 22 October 2020 Accepted: 29 December 2020 Published: 19 January 2021
  • MSC : 34A30, 34A99, 35A22

  • In this study, fundamental definitions and theorems of the Multiplicative Differential Transform Method (MDTM) are given. First and second order multiplicative initial value problems are numerically solved with the help of MDTM.

    Citation: Numan Yalçın, Mutlu Dedeturk. Solutions of multiplicative ordinary differential equations via the multiplicative differential transform method[J]. AIMS Mathematics, 2021, 6(4): 3393-3409. doi: 10.3934/math.2021203

    Related Papers:

  • In this study, fundamental definitions and theorems of the Multiplicative Differential Transform Method (MDTM) are given. First and second order multiplicative initial value problems are numerically solved with the help of MDTM.


    加载中


    [1] D. Aniszewska, Multiplicative Runge-Kutta method, Nonlinear Dyn., 50 (2007), 265–272. doi: 10.1007/s11071-006-9156-3
    [2] A. E. Bashirov, E. M. Kurpinar, A. Ozyapici, Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48. doi: 10.1016/j.jmaa.2007.03.081
    [3] A. E. Bashirov, E. Misirli, Y. Tandogdu, A. Ozyapici, On modeling with multiplicative differential equations, Appl. Math., 26 (2011), 425–438. doi: 10.1007/s11766-011-2767-6
    [4] A. Ozyapici, E. Misirli, Exponential approximations on multiplicative calculus, Proc. Jangjeon Math. Soc., 12 (2009), 227–236.
    [5] A. Ozyapici, Çarpımsal Analiz ve Uygulamaları, Ege University, PhD thesis, 2009.
    [6] A. Ozyapici, B. Bilgehan, Finite product representation via multiplicative calculus and its applications to exponential signal processing, Numer. Algorithms, 71 (2016), 475–489. doi: 10.1007/s11075-015-0004-8
    [7] D. Campbell, Multiplicative calculus and student projects, PRIMUS, 9 (1999), 327–332. doi: 10.1080/10511979908965938
    [8] D. Filip, C. Piatecki, An overview on the non-newtonian calculus and its potential applications to economics, Appl. Math. Comput., 187 (2007), 68–78.
    [9] D. Stanley, A multiplicative calculus, PRIMUS, 9 (1999), 310–326. doi: 10.1080/10511979908965937
    [10] E. Misirli, Y. Gurefe, Multiplicative Adams Bashforth Moulton methods, Numer. Algorithms, 57 (2011), 425–439. doi: 10.1007/s11075-010-9437-2
    [11] L. Florack, H. Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging Vis., 42 (2012), 64–75. doi: 10.1007/s10851-011-0275-1
    [12] M. Grossman, R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, MA, 1972.
    [13] M. Riza, A. Ozyapici, E. Misirli, Multiplicative finite difference methods, Q. Appl. Math., 67 (2009), 745–754. doi: 10.1090/S0033-569X-09-01158-2
    [14] V. Volterra, B. Hostinsky, Operations infinitesimales lineares, Gauthier-Villars, Paris, France, 1938.
    [15] N. Yalcin, E. Celik, A. Gokdogan, Multiplicative Laplace transform and its applications, Optik, 127 (2016).
    [16] N. Yalçın, E. Çelik, The solution of multiplicative non-homogeneous linear differential equations, J. Appl. Math. Comput., 2 (2018), 27–36.
    [17] N. Yalcin, E. Celik, Solution of multiplicative homogeneous linear differential equations with constant exponentials, New Trends Math. Sci., 6 (2018), 58–67.
    [18] N. Yalçı n, E. Çelik, Çarpımsal Cauchy-Euler ve Legendre diferansiyel denklemi, Gumushane Univ. J. Sci. Technol., 9 (2019), 382–373.
    [19] N. Yalcin, The solutions of multiplicative Hermite differential equation and multiplicative Hermite polynomials, Rendiconti del Circolo Matematico di Palermo Series 2, (2020).
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2779) PDF downloads(213) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog