Research article

Robust passivity analysis of mixed delayed neural networks with interval nondifferentiable time-varying delay based on multiple integral approach

  • Received: 25 October 2020 Accepted: 22 December 2020 Published: 06 January 2021
  • MSC : 34K25, 93D05, 93D09

  • New results on robust passivity analysis of neural networks with interval nondifferentiable and distributed time-varying delays are investigated. It is assumed that the parameter uncertainties are norm-bounded. By construction an appropriate Lyapunov-Krasovskii containing single, double, triple and quadruple integrals, which fully utilize information of the neuron activation function and use refined Jensen's inequality for checking the passivity of the addressed neural networks are established in linear matrix inequalities (LMIs). This result is less conservative than the existing results in literature. It can be checked numerically using the effective LMI toolbox in MATLAB. Three numerical examples are provided to demonstrate the effectiveness and the merits of the proposed methods.

    Citation: Thongchai Botmart, Sorphorn Noun, Kanit Mukdasai, Wajaree Weera, Narongsak Yotha. Robust passivity analysis of mixed delayed neural networks with interval nondifferentiable time-varying delay based on multiple integral approach[J]. AIMS Mathematics, 2021, 6(3): 2778-2795. doi: 10.3934/math.2021170

    Related Papers:

  • New results on robust passivity analysis of neural networks with interval nondifferentiable and distributed time-varying delays are investigated. It is assumed that the parameter uncertainties are norm-bounded. By construction an appropriate Lyapunov-Krasovskii containing single, double, triple and quadruple integrals, which fully utilize information of the neuron activation function and use refined Jensen's inequality for checking the passivity of the addressed neural networks are established in linear matrix inequalities (LMIs). This result is less conservative than the existing results in literature. It can be checked numerically using the effective LMI toolbox in MATLAB. Three numerical examples are provided to demonstrate the effectiveness and the merits of the proposed methods.



    加载中


    [1] R. Fantacci, M. Forti, M. Marini, L. Pancani, Cellular neural network approach to a class of communication problems, IEEE Trans. Circuits Syst., 46 (1999), 1457–1467. doi: 10.1109/81.809547
    [2] H. Shao, H. Li, C. Zhu, New stability results for delayed neural networks, IEEE Trans. Circuits Syst., 311 (2017), 324–334.
    [3] S. S. Young, P. D. Scott, N. M. Nasrabadi, Object recognition multilayer hop field neural network, IEEE Trans. Image Process., 6 (1997), 357–372. doi: 10.1109/83.557336
    [4] N. Cui, H. Jiang, C. Hu, A. Abdurahman, Global asymptotic and robust stability of inertial neural networks with proportional delays, Neurocomputing, 272 (2017), 326–333.
    [5] E. Fridman, Introduction to time-delay systems: Analysis and control, Springer, 2017.
    [6] K. Gu, V. L. Kharitonov, J. Chen, Stability of time-delay systems, Birkhäuser: Berlin, Germany, 2003.
    [7] J. K. Tian, D. S. Xu, J. Zu, Novel delay-dependent asymptotic stability criteria for neural networks with time-varying delays, J. Comput. Appl. Math., 228 (2009), 133–138. doi: 10.1016/j.cam.2008.09.002
    [8] B. Yang, J. Wang, X. D. Liu, Improved delay-dependent stability criteria for generalized neural networks with time-varying delays, Inform. Sci., 420 (2017), 299–312. doi: 10.1016/j.ins.2017.08.072
    [9] Y. Cao, Y. Cao, Z. Guo, T. Huang, S. Wen, Global exponential synchronization of delayed memristive neural networks with reaction-diffusion terms, Neural Netw., 123 (2020), 70–81. doi: 10.1016/j.neunet.2019.11.008
    [10] Y. Wang, Y. Cao, Z. Guo, T. Huang, S. Wen, Event-based sliding-mode synchronization of delayed memristive neural networks via continuous/periodic sampling algorithm, Appl. Math. Comput., 383 (2020), 125379.
    [11] J. Liu, H. Wu, J. Cao, Event-triggered synchronization in fixed time for semi-Markov switching dynamical complex networks with multiple weights and discontinuous nonlinearity, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 1–21.
    [12] X. Peng, H. Wu, J. Cao, Global nonfragile synchronization in finite time for fractional-order discontinuous neural networks with nonlinear growth activations, IEEE Trans. Neural Netw. Learn., 30 (2019), 2123–2137. doi: 10.1109/TNNLS.2018.2876726
    [13] Y. Liu, Z. Wang, X. Liu, Stability criteria for periodic neural networks with discrete and distributed delays, Nonlinear Dyn., 49 (2007), 93–103. doi: 10.1007/s11071-006-9106-0
    [14] Z. Wang, Y. Liu, K. Fraser, X. Liu, Stochastic stability of uncertain hop field neural networks with discrete and distributed delays, Phys. Lett. A., 254 (2006), 288–297.
    [15] W. J. Lin, Y. He, C. K. Zhang, M. Wu, Stability analysis of neural networks with time-varying delay: Enhanced stability criteria and conservatism comparisons, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 118–135. doi: 10.1016/j.cnsns.2017.05.021
    [16] S. Senthilraj, R. Raja, Q. Zhu, R. Samidurai, Z. Yao, New delay-interval-dependent stability criteria for static neural networks with time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 186 (2016), 1–7.
    [17] Y. Shan, S. Zhong, J. Cui, L. Hou, Y. Li, Improved criteria of delay-dependent stability for discrete-time neural networks with leakage delay, Neurocomputing, 266 (2017), 409–419. doi: 10.1016/j.neucom.2017.05.053
    [18] W. Wang, M. Yu, X. Luo, L. Liu, M. Yuan, W. Zhao, Synchronization of memristive BAM neural networks with leakage delay and additive time-varying delay components via sampled-data control, Chaos Solitons Fractals., 104 (2017), 84–97. doi: 10.1016/j.chaos.2017.08.011
    [19] Z. Wang, H. Xeu, Y. Pan, H. Liang, Adaptive neural networks event-triggered fault-tolerant consensus control for a class of nonlinear multi-agent systems, AIMS Math., 5 (2020), 2780–2800. doi: 10.3934/math.2020179
    [20] S. Wang, Y Cao, T. Huang, Y. Chen, S. Wen, Event-triggered distributed control for synchronization of multiple memristive neural networks under cyber-physical attacks, Inform. Sci., 518 (2020), 361–375. doi: 10.1016/j.ins.2020.01.022
    [21] S. Wang, Y. Cao, Z. Guo, Z. Yan, S. Wen, T. Huang, Periodic event-triggered synchronization of multiple memristive neural networks with switching topologies and parameter mismatch, IEEE Trans. Cybern., Doi: 10.1109/TCYB.2020.2983481,(2020),1–11.
    [22] W. Zhao, H. Wu, Fixed-time synchronization of semi-Markovian jumping neural networks with time-varying delays, Adv. Differ. Equ., 2018 (2018), 1–21. doi: 10.1186/s13662-017-1452-3
    [23] M. Liu, H. Wu, W. Zhao, Event-triggered stochastic synchronization in finite time for delayed semi-Markovian jump neural networks with discontinuous activations, Comput. Appl. Math., 39 (2020), 1–47. doi: 10.1007/s40314-019-0964-8
    [24] Y. Chen, Z. Fu, Y. Liu, F. E. Alsaadi, Further results on passivity analysis of delayed neural networks with leakage delay, Math. Probl. Eng., 224 (2017), 135–141.
    [25] H. Li, J. Lam, K. C. Cheung, Passivity criteria for continuous-time neural networks with mixed time-varying delays, Appl. Math. Comput., 218 (2012), 11062–11074.
    [26] A. Wu, Z. Zeng, Exponential passivity of memristive neural networks with time delays, Neural Netw., 49 (2014), 11–18. doi: 10.1016/j.neunet.2013.09.002
    [27] X. Zhang, H. Su, R. Lu, Second-order integral sliding mode control for uncertain systems with input delay based on singular perturbation approach, IEEE Trans. Automat. Control., 60 (2015), 3095–3100. doi: 10.1109/TAC.2015.2411991
    [28] Y. Du, S. Zhong, J. Xu, N. Zhou, Delay-dependent exponential passivity of uncertain cellular neural networks with discrete and distributed time-varying delays, ISA Trans., 56 (2015), 1–7. doi: 10.1016/j.isatra.2014.11.005
    [29] W. Wang, H. Zeng, S. Xiao, Passivity analysis of neural networks with discrete and distributed delays, 27th CCDC.IEEE, (2015), 2894–2898.
    [30] Z. Zhang, S. Mou, J. Lam, H. Gao, New passivity criteria for neural networks with time-varying delay, ISA Transactions., 22 (2009), 864–868.
    [31] Y. Li, S. Zhong, J. Cheng, K. Shi, J. Ren, New passivity criteria for uncertain neural networks with time-varying delay, Neurocomputing, 171 (2016), 1003–1012. doi: 10.1016/j.neucom.2015.07.033
    [32] R. Raja, Q. Zhu, S. Senthilraj, R. Samidurai, Improved stability analysis of uncertain neutral type neural networks with leakage delays and impulsive effects, Appl. Math. Comput., 266 (2015), 1050–1069.
    [33] B. Chen, H. Li, C. Lin, Q. Zhou, Passivity analysis for uncertain neural networks with discrete and distributed time-varying delays, Phys. Lett. A., 373 (2009), 1242–1248. doi: 10.1016/j.physleta.2009.01.047
    [34] Z. Chen, X. Wang, S. Zhong, J. Yang, Improved delay-dependent robust passivity criteria for uncertain neural networks with discrete and distributed delays, Chaos Solitons Fractals., 103 (2017), 23–32. doi: 10.1016/j.chaos.2017.05.023
    [35] R. Samidurai, R. Manivannan, Delay-range-dependent passivity analysis for uncertain stochastic neural networks with discrete and distributed time-varying delays, Neurocomputing, 185 (2016), 191–201. doi: 10.1016/j.neucom.2015.12.056
    [36] S. Y. Xu, W. X. Zheng, Y. Zou, Passivity analysis of neural networks with time-varying delays, IEEE Trans. Circuits Syst., 56 (2009), 325–329.
    [37] B. Yang, J. Wang, M. Hao, H. Zeng, Further results on passivity analysis for uncertain neural networks with discrete and distributed delays, Inform. Sci., 430-431 (2018), 77–86. doi: 10.1016/j.ins.2017.11.015
    [38] N. Yotha, T. Botmart, K. Mukdasai, W. Weera, Improved delay-dependent approach to passivity analysis for uncertain neural networks with discrete interval and distributed time-varying delays, Vietnam J. Math., 45 (2017), 721–736. doi: 10.1007/s10013-017-0243-1
    [39] H. B. Zeng, Y. He, M. Wu, S. P. Xiao, Passivity analysis for neural networks with a time-varying delay, Neurocomputing, 74 (2011), 730–734. doi: 10.1016/j.neucom.2010.09.020
    [40] H. B. Zeng, J. H. Park, H. Shen, Robust passivity analysis of neural networks with discrete and distributed delays, Neurocomputing, 149 (2015), 1092–1097. doi: 10.1016/j.neucom.2014.07.024
    [41] L. V. Hien, H. Trinh, Refined Jensen-based inequality approach to stability analysis of time-delay systems, IET Control Theory Appl., 9 (2015), 2188–2194. doi: 10.1049/iet-cta.2014.0962
    [42] BOD. Anderson, S. Vongpanitlerd, Network analysis synthesis: A modern systems theory approach, Prentice Hall, Englewood Cliffs, 1973.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1277) PDF downloads(49) Cited by(2)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog