Research article

On the numerical solution of Fisher's equation by an efficient algorithm based on multiwavelets

  • Received: 04 October 2020 Accepted: 09 December 2020 Published: 17 December 2020
  • MSC : 65M60, 65T60, 34D20, 35L20

  • In this work, we design, analyze, and test an efficient algorithm based on the finite difference method and wavelet Galerkin method to solve the well known Fisher's equation. We employed the Crank-Nicolson scheme to discretize the time interval into a finite number of time steps, and this gives rise to an ordinary differential equation at each time step. To solve this ODE, we utilize the multiwavelets Galerkin method. The $ L^2 $ stability and convergence of the scheme have been investigated by the energy method. Illustrative examples are provided to verify the efficiency and applicability of the method.

    Citation: Haifa Bin Jebreen. On the numerical solution of Fisher's equation by an efficient algorithm based on multiwavelets[J]. AIMS Mathematics, 2021, 6(3): 2369-2384. doi: 10.3934/math.2021144

    Related Papers:

  • In this work, we design, analyze, and test an efficient algorithm based on the finite difference method and wavelet Galerkin method to solve the well known Fisher's equation. We employed the Crank-Nicolson scheme to discretize the time interval into a finite number of time steps, and this gives rise to an ordinary differential equation at each time step. To solve this ODE, we utilize the multiwavelets Galerkin method. The $ L^2 $ stability and convergence of the scheme have been investigated by the energy method. Illustrative examples are provided to verify the efficiency and applicability of the method.



    加载中


    [1] M. Abbaszadeh, M. Dehghan, A. Khodadadian, C. Heitzinger, Error analysis of interpolating element free Galerkin method to solve non-linear extended Fisher-Kolmogorov equation, Comput. Math. Appl., 80 (2020), 247–262. doi: 10.1016/j.camwa.2020.03.014
    [2] B. Alpert, G. Beylkin, D. Gines, L. Vozovoi, Adaptive solution of partial differential equations in multiwavelet bases, J. Comput. Phys., 182 (2002), 149–190. doi: 10.1006/jcph.2002.7160
    [3] B. Alpert, G. Beylkin, R. R. Coifman, V. Rokhlin, Wavelet-like bases for the fast solution of second-kind integral equations, SIAM J. Sci. Statist. Comput., 14 (1993), 159–184. doi: 10.1137/0914010
    [4] A. Başhan, A mixed algorithm for numerical computation of soliton solutions of the coupled KdV equation: Finite difference method and differential quadrature method, Appl. Math. Comput., 360 (2019), 42–57.
    [5] A. Başhan, A numerical treatment of the coupled viscous Burgers' equation in the presence of very large Reynolds number, Physica A, 545 (2020), 123755. doi: 10.1016/j.physa.2019.123755
    [6] A. Başhan, Highly efficient approach to numerical solutions of two different forms of the modified Kawahara equation via contribution of two effective methods, Math. Comput. Simul., 179 (2021), 111–125. doi: 10.1016/j.matcom.2020.08.005
    [7] A. Başhan, Y. Uçar, N. Murat Yağmurlu, A. Esen, A new perspective for quintic B-spline based Crank-Nicolsondifferential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation, Eur. Phys. J. Plus, 133 (2018), 12. doi: 10.1140/epjp/i2018-11843-1
    [8] M. Dehghan, B. N. Saray, M. Lakestani, Mixed finite difference and Galerkin methods for solving Burgers equations using interpolating scaling functions, Math. Meth. Appl. Sci., 37 (2014), 894–912. doi: 10.1002/mma.2847
    [9] C. Cattani, A. Kudreyko, Mutiscale Analysis of the Fisher Equation, ICCSA 2008, Part I, Lecture Notes in Computer Science, Vol. 5072, Springer-Verlag, Berlin/Heidelberg, 2008.
    [10] Ki.W. Chau, C. W. Oosterlee, On the wavelet-based SWIFT method for backward stochastic differential equations, IMA Journal of Numerical Analysis, 38 (2018), 1051-1083. doi: 10.1093/imanum/drx022
    [11] M. S. El-Azab, An approximation scheme for a nonlinear diffusion Fisher's equation, Appl. Math. Comput., 186 (2007), 579–588.
    [12] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics., 7 (1937), 355–369. doi: 10.1111/j.1469-1809.1937.tb02153.x
    [13] J. Gazdag, J. Canosa, Numerical solution of Fisher's equation, J. Appl. Probab., 11 (1974), 445–457. doi: 10.2307/3212689
    [14] G. Hariharan, K. Kannan, K. R. Sharma, Haar wavelet method for solving Fisher's equation, Appl. Math. Comput., 211 (2009), 284–292.
    [15] N. Hovhannisyan, S. Müller R. Schäfer, Adaptive multiresolution discontinuous Galerkin schemes for conservation laws, Math. Comp., 83 (2014), 113–151.
    [16] M. Ilati, M. Dehghan, Direct local boundary integral equation method for numerical solution of extended Fisher-Kolmogorov equation, Eng. Comput., 34 (2018), 203–213. doi: 10.1007/s00366-017-0530-1
    [17] F. Keinert, Wavelets and multiwavelets, Chapman & Hall/CRC, 2003.
    [18] K. Al-Khaled, Numerical study of Fisher's reaction-diffusion equation by the sinc collocation method, J. Comput. Appl. Math., 137 (2001), 245–255.
    [19] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60 (1992), 650–654. doi: 10.1119/1.17120
    [20] R. C. Mittal, G. Arora, Efficient numerical solution of Fisher's equation by using B-spline method, Int. J. Comput. Math., 87 (2010), 3039–3051. doi: 10.1080/00207160902878555
    [21] R. C. Mittal, S. Kumar, Numerical study of Fisher's equation by wavelet Galerkin method, Int. J. Comput. Math., 83 (2006), 287–298. doi: 10.1080/00207160600717758
    [22] D. Olmos, B. D. Shizgal, A pseudospectral method of solution of Fisher's equation, J. Comput. Appl. Math., 193 (2006), 219–242. doi: 10.1016/j.cam.2005.06.028
    [23] Y. Qiu, D. M. Sloan, Numerical solution of Fisher's equation using a moving mesh method, J. Comput. Phys., 146 (1998), 726–746. doi: 10.1006/jcph.1998.6081
    [24] B. N. Saray, An efficient algorithm for solving Volterra integro-differential equations based on Alpert's multi-wavelets Galerkin method, J. Comput. Appl. Math., 348 (2019), 453–465. doi: 10.1016/j.cam.2018.09.016
    [25] B. N. Saray, M. Lakestani, C. Cattani, Evaluation of mixed Crank–Nicolson scheme and Tau method for the solution of Klein–Gordon equation, Appl. Math. Comput., 331 (2018), 169–181.
    [26] B. N. Saray, M. Lakestani, M. Razzaghi, Sparse representation of system of Fredholm integro-differential equations by using alpert multiwavelets, Comput. Math. Math. Phys., 55 (2015), 1468–1483. doi: 10.1134/S0965542515090031
    [27] S. H. Seyedi, B. N. Saray, A. Ramazani, On the multiscale simulation of squeezing nanofluid flow by a highprecision scheme, Powder Technology, 340 (2018), 264–273. doi: 10.1016/j.powtec.2018.08.088
    [28] M. Shahriari, B. N. Saray, M. Lakestani, J. Manafian, Numerical treatment of the Benjamin-Bona-Mahony equation using Alpert multiwavelets, Eur. Phys. J. Plus, 133 (2018), 1–12. doi: 10.1140/epjp/i2018-11804-8
    [29] A. M. Wazwaz, A. Gorguis, An analytic study of Fisher's equation by using Adomian decomposition method, Appl. Math. comput., 154 (2004), 609–620.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1700) PDF downloads(79) Cited by(6)

Article outline

Figures and Tables

Figures(7)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog